1. Academic Validation
  2. Repurposing HIV protease inhibitors as senotherapeutic agents in cervical cancer: Dual targeting of CDK1/6-cell cycle arrest and p53/p21/p16 signaling axis

Repurposing HIV protease inhibitors as senotherapeutic agents in cervical cancer: Dual targeting of CDK1/6-cell cycle arrest and p53/p21/p16 signaling axis

  • Biochem Biophys Res Commun. 2025 Jul 22:771:152040. doi: 10.1016/j.bbrc.2025.152040.
Lan Yu 1 Weiqiang Han 1 Jing Zhang 2 Guoxin Liu 1 Hongjuan Li 1 Yongqian Xu 1 Fengyu Liu 3 Shiguo Sun 4
Affiliations

Affiliations

  • 1 Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
  • 2 School of Medicine, Xinjiang University of Science&Technology, Korla, 841000, China.
  • 3 School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116023, China. Electronic address: liufengyu@dlut.edu.cn.
  • 4 Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shenzhen Research Institute, Northwest A&F University, Shenzhen, 518000, China. Electronic address: sunsg@nwsuaf.edu.cn.
Abstract

The clinical management of cervical Cancer remains constrained by limited therapeutic options and a paucity of targeted pharmacological interventions. Drug repurposing emerges as a promising strategy to expedite oncological therapeutics development. This study systematically investigates the antineoplastic potential of HIV Protease Inhibitors saquinavir (SQV) and tipranavir (TPV) through multimodal mechanistic validation. In vitro analyses demonstrated dose-dependent inhibition of cervical Cancer cell proliferation accompanied by significant upregulation of senescence-associated β-galactosidase (SA-β-Gal) activity. Molecular characterization revealed concomitant activation of senescence-regulatory proteins p53, p21, and p16, suggesting induction of tumor-suppressive senescence pathways. Transcriptomic profiling of inhibitor-treated SiHa cells identified critical cell cycle regulators CDK1 and CDK6, findings corroborated by molecular docking simulations revealing high-affinity binding to cyclin-dependent kinases (-32.0607 to -47.6820 kJ/mol). In vivo validation using xenograft models demonstrated comparable tumor growth inhibition to doxorubicin with preserved host viability and negligible systemic toxicity. Mechanistic integration revealed dual pathway modulation: G1-phase cell cycle arrest mediated through CDK1/6 suppression and coordinated activation of the p53/p21/p16 senescence signaling axis. These findings establish SQV and TPV as multi-targeted senotherapeutic agents, providing preclinical rationale for repurposing HIV antivirals as novel therapeutic strategy against cervical malignancies.

Keywords

CDK1/CDK6; Cellular senescence; Cervical cancer; Drug repurposing; HIV protease inhibitors.

Figures
Products