1. Anti-infection Metabolic Enzyme/Protease Apoptosis Membrane Transporter/Ion Channel Neuronal Signaling
  2. Antibiotic Bacterial HIF/HIF Prolyl-Hydroxylase Apoptosis MDM-2/p53 Potassium Channel Calcium Channel
  3. Minocycline

Minocycline is an orally active, potent and BBB-penetrated semi-synthetic tetracycline antibiotic. Minocycline is a hypoxia-inducible factor (HIF)-1α inhibitor. Minocycline shows anti-cancer, anti-inflammatory, and glutamate antagonist effects. Minocycline reduces glutamate neurotransmission and shows neuroprotective properties and antidepressant effects. Minocycline inhibits bacterial protein synthesis through binding with the 30S subunit of the bacterial ribosome, resulting in a bacteriostatic effect.

For research use only. We do not sell to patients.

Minocycline Chemical Structure

Minocycline Chemical Structure

CAS No. : 10118-90-8

Size Price Stock Quantity
1 mg In-stock
5 mg In-stock
10 mg In-stock
25 mg In-stock
50 mg In-stock
100 mg In-stock
200 mg   Get quote  
500 mg   Get quote  

* Please select Quantity before adding items.

This product is a controlled substance and not for sale in your territory.

Customer Review

Based on 50 publication(s) in Google Scholar

Other Forms of Minocycline:

Top Publications Citing Use of Products

48 Publications Citing Use of MCE Minocycline

Proliferation Assay
IF

    Minocycline purchased from MedChemExpress. Usage Cited in: J Neuroinflammation. 2018 Aug 30;15(1):245.  [Abstract]

    Immunostaining of the trigeminal nucleus caudalis (TNC) for Iba1 in the NTG group and the NTG+Minocycline (Mino) group on day 9.

    Minocycline purchased from MedChemExpress. Usage Cited in: Neurochem Res. 2017 Oct;42(10):2698-2711.  [Abstract]

    a Statistical analysis showing the prevention effect of minocycline pretreatment (40 mg/kg/day) on CUS-, CRS- or CSDS-induced decreases in hippocampal microglial numbers. b, c Statistical analysis showing the prevention effect of minocycline pretreatment (40 mg/kg/day) on CUS-, CRS- or CSDS-induced increases in the immobile time in the TST (b) and FST (c).
    • Biological Activity

    • Purity & Documentation

    • References

    • Customer Review

    Description

    Minocycline is an orally active, potent and BBB-penetrated semi-synthetic tetracycline antibiotic. Minocycline is a hypoxia-inducible factor (HIF)-1α inhibitor. Minocycline shows anti-cancer, anti-inflammatory, and glutamate antagonist effects. Minocycline reduces glutamate neurotransmission and shows neuroprotective properties and antidepressant effects. Minocycline inhibits bacterial protein synthesis through binding with the 30S subunit of the bacterial ribosome, resulting in a bacteriostatic effect[1][2][3][4][5][6][7].

    IC50 & Target

    L-type calcium channel

     

    Cellular Effect
    Cell Line Type Value Description References
    BV-2 IC50
    15 μM
    Compound: MINO
    Antineuroinflammatory activity against mouse BV2 cells assessed as inhibition of LPS-induced NO production incubated for 20 hrs by Griess assay
    Antineuroinflammatory activity against mouse BV2 cells assessed as inhibition of LPS-induced NO production incubated for 20 hrs by Griess assay
    [PMID: 33822610]
    BV-2 IC50
    17.5 μM
    Compound: Minocycline
    Ant-inflammatory LPS-induced mouse BV2 cells assessed as reduction in NO production after 24 hrs by Griess reagent based assay
    Ant-inflammatory LPS-induced mouse BV2 cells assessed as reduction in NO production after 24 hrs by Griess reagent based assay
    [PMID: 32129063]
    BV-2 IC50
    18.5 μM
    Compound: Minocycline
    Antineuroinflammatory activity in mouse BV2 cells assessed as inhibition of LPS-induced NO production incubated for 24 hrs by Griess assay
    Antineuroinflammatory activity in mouse BV2 cells assessed as inhibition of LPS-induced NO production incubated for 24 hrs by Griess assay
    [PMID: 32141299]
    BV-2 IC50
    27.2 μM
    Compound: Minocycline
    Antineuroinflammatory activity against mouse BV2 cells assessed as inhibition of LPS-induced NO production incubated for 24 hrs by Griess assay
    Antineuroinflammatory activity against mouse BV2 cells assessed as inhibition of LPS-induced NO production incubated for 24 hrs by Griess assay
    [PMID: 31415170]
    BV-2 IC50
    35.82 μM
    Compound: Minocycline
    Antineuroinflammatory activity in mouse BV2 cells assessed as inhibition of LPS-induced NO production after 24 hrs in presence of LPS by Griess reaction based assay
    Antineuroinflammatory activity in mouse BV2 cells assessed as inhibition of LPS-induced NO production after 24 hrs in presence of LPS by Griess reaction based assay
    [PMID: 27919656]
    BV-2 IC50
    37.04 μM
    Compound: Minocycline
    Antineuroinflammatory activity in human BV2 cells assessed as inhibition of LPS-induced NO production after 24 hrs in presence of LPS by Griess reaction
    Antineuroinflammatory activity in human BV2 cells assessed as inhibition of LPS-induced NO production after 24 hrs in presence of LPS by Griess reaction
    [PMID: 27623545]
    BV-2 IC50
    4.9 μM
    Compound: Minocycline
    Antineuroinflammatory activity in mouse BV2 cells assessed as inhibition of LPS-induced nitric oxide production measured after 24 hrs by Griess assay
    Antineuroinflammatory activity in mouse BV2 cells assessed as inhibition of LPS-induced nitric oxide production measured after 24 hrs by Griess assay
    [PMID: 30350995]
    BV-2 IC50
    9.07 μM
    Compound: Minocycline
    Antineuroinflammatory activity in mouse BV2 cells assessed as inhibition of LPS-induced NO production after 24 hrs in presence of LPS by Griess reaction based assay
    Antineuroinflammatory activity in mouse BV2 cells assessed as inhibition of LPS-induced NO production after 24 hrs in presence of LPS by Griess reaction based assay
    [PMID: 28911817]
    CCRF-CEM CC50
    52.1 μM
    Compound: minocycline
    Cytotoxicity against CEM cells after 5 days by MTT method
    Cytotoxicity against CEM cells after 5 days by MTT method
    [PMID: 17376679]
    N9 IC50
    19.89 μM
    Compound: Minocycline
    Antineuroinflammatory activity in mouse N9 cells assessed as inhibition of LPS-induced nitric oxide production after 24 hrs by Griess assay
    Antineuroinflammatory activity in mouse N9 cells assessed as inhibition of LPS-induced nitric oxide production after 24 hrs by Griess assay
    [PMID: 28073678]
    RAW264.7 IC50
    31.28 μM
    Compound: Minocycline
    Antiinflammatory activity against mouse RAW264.7 cells assessed as inhibition of LPS induced nitric oxide production preincubated for 2 hrs followed by LPS challenge measured after 24 hrs by Griess reagent based assay
    Antiinflammatory activity against mouse RAW264.7 cells assessed as inhibition of LPS induced nitric oxide production preincubated for 2 hrs followed by LPS challenge measured after 24 hrs by Griess reagent based assay
    [PMID: 29853329]
    RAW264.7 IC50
    34.81 μM
    Compound: MINO
    Antiinflammatory activity in mouse RAW264.7 cells assessed as inhibition of LPS-induced NO production after 24 hrs
    Antiinflammatory activity in mouse RAW264.7 cells assessed as inhibition of LPS-induced NO production after 24 hrs
    [PMID: 23391590]
    RAW264.7 IC50
    34.85 μM
    Compound: MINO
    Antiinflammatory activity in mouse RAW264.7 cells assessed as inhibition of LPS-induced NO production after 24 hrs by Griess method
    Antiinflammatory activity in mouse RAW264.7 cells assessed as inhibition of LPS-induced NO production after 24 hrs by Griess method
    [PMID: 22264489]
    RAW264.7 IC50
    55.1 μM
    Compound: Minocycline
    Antiinflammatory activity in mouse RAW264.7 cells assessed as inhibition of LPS-induced nitric oxide production after 24 hrs by Griess assay
    Antiinflammatory activity in mouse RAW264.7 cells assessed as inhibition of LPS-induced nitric oxide production after 24 hrs by Griess assay
    [PMID: 27765508]
    In Vitro

    Minocycline (0-100 μM, 24-72 h) suppresses proliferation and clonogenic activity of ovarian cancer cell-lines (OVCAR-3, SKOV-3 and A2780)[3].
    Minocycline (0-100 μM, 24-48 h)arrests cell cycle through inhibition of cyclins and suppression of DNA incorporation[3].
    Minocycline (0-100 μM, 72 h) induces cell apoptosis in ovarian cancer cell lines[3].
    Minocycline shows direct neuronal protection, and this mode of protection is likely to be associated with the preservation of mitochondrial integrity and cytochrome c, followed by the suppression of caspase-dependent as well as caspase-independent cell death[2].
    Minocycline leads to suppression of Hypoxia-inducible factor (HIF)-1α accompanied by up-regulation of p53 protein levels and inactivation of AKT/mTOR/p70S6K/4E-BP1 pathway[6].

    MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

    Cell Proliferation Assay[3]

    Cell Line: Human ovarian cancer cell lines (OVCAR-3, SKOV-3 and A2780) and primary cells (HEK-293, HMEC, HUVEC, ATCC)
    Concentration: 0, 1, 10, 50 and 100 μM
    Incubation Time: 24, 48 or 72 h
    Result: Inhibited proliferation of OVCAR-3, SKOV-3 and A2780 cells in a concentration-dependent manner, with IC50 values of 62.0, 56.1 and 59.5 μM, respectively. Had no effect on the viability of HEK-293 or HUVEC.

    Cell Cycle Analysis[3]

    Cell Line: OVCAR-3, SKOV-3 and A2780 cells
    Concentration: 0, 10, 50 and 100 μM
    Incubation Time: 24 or 48 h
    Result: Arrested cells in the G0-G1 phase in a concentration and time-dependent manner. Declined percentage of cells in the S and G2-M phases in excess of 80% each at 100 μM.

    Western Blot Analysis[3]

    Cell Line: OVCAR-3, SKOV-3 and A2780 cells
    Concentration: 0, 10, 50 and 100 μM
    Incubation Time: 72 h
    Result: Expressed lower levels of cyclins A, B and E. Increased caspase-3 levels by more than 3.0 fold in the 100 μM. Minocycline-activated caspase-3 in turn led to cleavage of PARP-1. Increased the degradation product p89 of PARP-1 by caspase-3.
    In Vivo

    Minocycline (0-30 mg/kg, orally, daily for 4 weeks) suppresses OVCAR-3 tumor growth in female nude mice[3].
    Minocycline (IP) is an effective neuroprotective agent in animal models of cerebral ischemia when given in high doses intraperitoneally[1].
    Minocycline (0-40 mg/kg, IP, once) significantly attenuats METH-induced hyperlocomotion and the development of behavioral sensitization in mice[2].
    Minocycline (3 and 10 mg/kg, IV, once) is effective at reducing infarct size in a Temporary Middle Cerebral Artery Occlusion model (TMCAO)[1].
    Minocycline attenuates ischemia-induced ventricular arrhythmias in rats. This effect may be associated with activations of PI3K/Akt signaling pathway, mitochondrial KATP channels and L-type Ca2+ channels[7].

    MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

    Animal Model: Female nude mice (6 weeks old, 9 per group, OVCAR-3 cells were injected s.c. into the left flank of each mouse)[3]
    Dosage: 10 or 30 mg/kg
    Administration: Administered orally in the drinking water, initiated on day 8 of cell inoculation, daily for 4 weeks
    Result: Suppressed OVCAR-3 tumor growth in these female nude mice, and reduced microvessel density.
    Animal Model: Male Balb/cAnNCrICrIj mice (8 weeks old, 23-30 g, methamphetamine (METH, 3 mg/kg) was injected subcutaneously (s.c.) in a volume of 10 ml/kg)[2]
    Dosage: 0, 10, 20, or 40 mg/kg
    Administration: IP, once, 30 min before the administration of METH
    Result: Significantly attenuated METH-induced hyperlocomotion and the development of behavioral sensitization in mice at 40 mg/kg. Did not exert any effect on the induction of METH-induced hyperthermia in mice. Significantly attenuated the reduction of DA and DOPAC in the striatum. Significantly attenuated the reduction of DAT-immunoreactivity in the mouse striatum. Significantly attenuated the increase in MAC1-immunoreactivity in the striatum after the administration of METH.
    Animal Model: Male Sprague-Dawley rats (270-330 g, TMCAO model)[1]
    Dosage: 3 mg/kg and 10 mg/kg
    Administration: IV, once, 4, 5, or 6 hours post TMCAO
    Result: Reduced infarct size by 42% while 10 mg/kg reduced infarct size by 56% at doses of 3 mg/kg; significantly reduced infarct size at 5 hours by 40% at doses of 10 mg/kg and the 3 mg/kg dose significantly reduced infarct size by 34%. With a 6 hour time window there was a non-significant trend in infarct reduction.
    Animal Model: Male Sprague-Dawley rats (270-330 g)[1]
    Dosage: 3, 10, or 20 mg/kg
    Administration: IV, once
    Result: Peak concentrations of serum levels of minocycline averaged 3.6, 13.0 and 28.8 mg/L with 3, 10 and 20 mg/kg doses respectively. The serum levels of minocycline at a 3 mg/kg dose (3.6 mg/L) were similar to that reported in humans after a standard 200 mg dose. Did not significantly affect hemodynamic and physiological variables.
    Clinical Trial
    Molecular Weight

    457.48

    Formula

    C23H27N3O7

    CAS No.
    Appearance

    Solid

    Color

    Light yellow to yellow

    SMILES

    O=C(C(C1=O)=C(O)[C@@H](N(C)C)[C@]2([H])C[C@]3([H])CC4=C(C(C3=C(O)[C@@]21O)=O)C(O)=CC=C4N(C)C)N

    Shipping

    Room temperature in continental US; may vary elsewhere.

    Storage

    4°C, protect from light

    *In solvent : -80°C, 6 months; -20°C, 1 month (protect from light)

    Solvent & Solubility
    In Vitro: 

    DMSO : 25 mg/mL (54.65 mM; Need ultrasonic; Hygroscopic DMSO has a significant impact on the solubility of product, please use newly opened DMSO)

    Preparing
    Stock Solutions
    Concentration Solvent Mass 1 mg 5 mg 10 mg
    1 mM 2.1859 mL 10.9294 mL 21.8589 mL
    5 mM 0.4372 mL 2.1859 mL 4.3718 mL
    View the Complete Stock Solution Preparation Table

    * Please refer to the solubility information to select the appropriate solvent. Once prepared, please aliquot and store the solution to prevent product inactivation from repeated freeze-thaw cycles.
    Storage method and period of stock solution: -80°C, 6 months; -20°C, 1 month (protect from light). When stored at -80°C, please use it within 6 months. When stored at -20°C, please use it within 1 month.

    • Molarity Calculator

    • Dilution Calculator

    Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

    Mass
    =
    Concentration
    ×
    Volume
    ×
    Molecular Weight *

    Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

    This equation is commonly abbreviated as: C1V1 = C2V2

    Concentration (start)

    C1

    ×
    Volume (start)

    V1

    =
    Concentration (final)

    C2

    ×
    Volume (final)

    V2

    In Vivo:

    Select the appropriate dissolution method based on your experimental animal and administration route.

    For the following dissolution methods, please ensure to first prepare a clear stock solution using an In Vitro approach and then sequentially add co-solvents:
    To ensure reliable experimental results, the clarified stock solution can be appropriately stored based on storage conditions. As for the working solution for in vivo experiments, it is recommended to prepare freshly and use it on the same day.
    The percentages shown for the solvents indicate their volumetric ratio in the final prepared solution. If precipitation or phase separation occurs during preparation, heat and/or sonication can be used to aid dissolution.

    • Protocol 1

      Add each solvent one by one:  10% DMSO    90% (20% SBE-β-CD in Saline)

      Solubility: ≥ 2.5 mg/mL (5.46 mM); Clear solution

      This protocol yields a clear solution of ≥ 2.5 mg/mL (saturation unknown).

      Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (25.0 mg/mL) to 900 μL 20% SBE-β-CD in Saline, and mix evenly.

      Preparation of 20% SBE-β-CD in Saline (4°C, storage for one week): 2 g SBE-β-CD powder is dissolved in 10 mL Saline, completely dissolve until clear.
    In Vivo Dissolution Calculator
    Please enter the basic information of animal experiments:

    Dosage

    mg/kg

    Animal weight
    (per animal)

    g

    Dosing volume
    (per animal)

    μL

    Number of animals

    Recommended: Prepare an additional quantity of animals to account for potential losses during experiments.
    Please enter your animal formula composition:
    %
    DMSO +
    +
    %
    Tween-80 +
    %
    Saline
    Recommended: Keep the proportion of DMSO in working solution below 2% if your animal is weak.
    The co-solvents required include: DMSO, . All of co-solvents are available by MedChemExpress (MCE). , Tween 80. All of co-solvents are available by MedChemExpress (MCE).
    Calculation results:
    Working solution concentration: mg/mL
    Method for preparing stock solution: mg drug dissolved in μL  DMSO (Stock solution concentration: mg/mL).

    *In solvent : -80°C, 6 months; -20°C, 1 month (protect from light)

    The concentration of the stock solution you require exceeds the measured solubility. The following solution is for reference only. If necessary, please contact MedChemExpress (MCE).
    Method for preparing in vivo working solution for animal experiments: Take μL DMSO stock solution, add μL . μL , mix evenly, next add μL Tween 80, mix evenly, then add μL Saline.
     If the continuous dosing period exceeds half a month, please choose this protocol carefully.
    Please ensure that the stock solution in the first step is dissolved to a clear state, and add co-solvents in sequence. You can use ultrasonic heating (ultrasonic cleaner, recommended frequency 20-40 kHz), vortexing, etc. to assist dissolution.
    Purity & Documentation
    References

    Complete Stock Solution Preparation Table

    * Please refer to the solubility information to select the appropriate solvent. Once prepared, please aliquot and store the solution to prevent product inactivation from repeated freeze-thaw cycles.
    Storage method and period of stock solution: -80°C, 6 months; -20°C, 1 month (protect from light). When stored at -80°C, please use it within 6 months. When stored at -20°C, please use it within 1 month.

    Optional Solvent Concentration Solvent Mass 1 mg 5 mg 10 mg 25 mg
    DMSO 1 mM 2.1859 mL 10.9294 mL 21.8589 mL 54.6472 mL
    5 mM 0.4372 mL 2.1859 mL 4.3718 mL 10.9294 mL
    10 mM 0.2186 mL 1.0929 mL 2.1859 mL 5.4647 mL
    15 mM 0.1457 mL 0.7286 mL 1.4573 mL 3.6431 mL
    20 mM 0.1093 mL 0.5465 mL 1.0929 mL 2.7324 mL
    25 mM 0.0874 mL 0.4372 mL 0.8744 mL 2.1859 mL
    30 mM 0.0729 mL 0.3643 mL 0.7286 mL 1.8216 mL
    40 mM 0.0546 mL 0.2732 mL 0.5465 mL 1.3662 mL
    50 mM 0.0437 mL 0.2186 mL 0.4372 mL 1.0929 mL
    • No file chosen (Maximum size is: 1024 Kb)
    • If you have published this work, please enter the PubMed ID.
    • Your name will appear on the site.
    Help & FAQs
    • Do most proteins show cross-species activity?

      Species cross-reactivity must be investigated individually for each product. Many human cytokines will produce a nice response in mouse cell lines, and many mouse proteins will show activity on human cells. Other proteins may have a lower specific activity when used in the opposite species.

    Your Recently Viewed Products:

    Inquiry Online

    Your information is safe with us. * Required Fields.

    Product Name

     

    Requested Quantity *

    Applicant Name *

     

    Salutation

    Email Address *

     

    Phone Number *

    Department

     

    Organization Name *

    City

    State

    Country or Region *

         

    Remarks

    Bulk Inquiry

    Inquiry Information

    Product Name:
    Minocycline
    Cat. No.:
    HY-17412A
    Quantity:
    MCE Japan Authorized Agent: