1. Academic Validation
  2. Neuropeptide VGF-Derived Peptide LQEQ-19 has Neuroprotective Effects in an In Vitro Model of Amyotrophic Lateral Sclerosis

Neuropeptide VGF-Derived Peptide LQEQ-19 has Neuroprotective Effects in an In Vitro Model of Amyotrophic Lateral Sclerosis

  • Neurochem Res. 2019 Apr;44(4):897-904. doi: 10.1007/s11064-019-02725-4.
Y Noda 1 S Motoyama 1 S Nakamura 1 M Shimazawa 1 H Hara 2
Affiliations

Affiliations

  • 1 Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
  • 2 Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan. hidehara@gifu-pu.ac.jp.
Abstract

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease caused by the loss of upper and lower motor neurons resulting in muscle weakness and paralysis. Recently, VGF, a neuropeptide that is a precursor of bioactive polypeptides, was found to be decreased in ALS patients, and its inducer exerted protective effects in models of ALS. These findings suggested that VGF was involved in the pathology of ALS. Here, we investigated the neuroprotective effects of various VGF-derived peptides in an in vitro ALS model. We applied seven VGF-derived peptides (TLQP-21, AQEE-30, AQEE-11, LQEQ-19, QEEL-16, LENY-13, and HVLL-7) to the motor neuron-derived cell line, NSC-34, expressing SOD1G93A, which is one of the mutated proteins responsible for familial ALS. Nuclear staining revealed that AQEE-30 and LQEQ-19, which are derived from the C-terminal polypeptide of the VGF precursor protein, attenuated neuronal cell death. Furthermore, immunoblot analysis demonstrated that LQEQ-19 promoted the phosphorylation of Akt and extracellular signal-regulated kinase (ERK) 1/2, and inhibiting these mitogen-activated MAP kinases (MAPKs) with phosphoinositide 3-kinase or MEK/ERK inhibitors, eliminated the neuroprotective effects of LQEQ-19. In conclusion, these results suggest that VGF C-terminal peptides exert their neuroprotective effects via activation of MAPKs such as Akt and ERK1/2. Furthermore, these findings indicate that VGF-derived peptides have potential application in ALS therapy.

Keywords

AQEE-30; Akt; Extracellular signal-regulated kinase; LQEQ-19; VGF.

Figures
Products