1. Academic Validation
  2. Antifungal Activity, Mode of Action, Docking Prediction and Anti-biofilm Effects of (+)-β-pinene Enantiomers against Candida spp

Antifungal Activity, Mode of Action, Docking Prediction and Anti-biofilm Effects of (+)-β-pinene Enantiomers against Candida spp

  • Curr Top Med Chem. 2018;18(29):2481-2490. doi: 10.2174/1568026618666181115103104.
Ana Cláudia de Macêdo Andrade 1 Pedro Luiz Rosalen 2 Irlan Almeida Freires 3 Luciana Scotti 1 Marcus Tulius Scotti 1 Sabrina Garcia Aquino 1 Ricardo Dias de Castro 1
Affiliations

Affiliations

  • 1 Federal University of Paraiba, Campus I, Joao Pessoa, PB, Brazil.
  • 2 Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
  • 3 University of Florida College of Dentistry, Gainesville, FL, United States.
Abstract

Aims: The objective of this study was to investigate the effectiveness of (+)-β-pinene inhibition on Candida spp. growth, aiming at elucidation of the mechanism of action; to determine Fungal cell enzyme binding activity (through molecular docking simulations) and its effects on biofilm reduction.

Methods: Candida strains (n=25) from referenced and clinical origins, either susceptible or resistant to standard clinical antifungals, were tested for determination of Minimum Inhibitory Concentration (MIC); Minimum Fungicidal Concentration (MFC); and microbial death curves upon treatment with (+)-β-pinene; the effects of (+)-β-pinene on the cell wall (sorbitol assay), membrane ergosterol binding, and effects on biofilm were evaluated by microdilution techniques. We also evaluated the interactions between (+)-β-pinene and cell wall and membrane Enzymes of interest.

Results: The MIC values of (+)-β-pinene ranged from <56.25 to 1800 µmol/L. The MIC of (+)-β-pinene did not increase when ergosterol was added to the medium, however it did increase in the presence of sorbitol, leading to a doubled MIC for C. tropicalis and C. krusei. The results of the molecular docking simulations indicated better interaction with delta-14-sterol reductase (-51 kcal/mol). (+)-β-pinene presents anti-biofilm activity against multiples species of Candida.

Conclusion: (+)-β-pinene has Antifungal activity and most likely acts through interference with the cell wall; through molecular interaction with Delta-14-sterol reductase and, to a lesser extent, with the 1,3-β- glucan synthase. This molecule was also found to effectively reduce Candida biofilm adhesion.

Keywords

Antifungal agents; Candidiasis; Drug synergism; Molecular docking simulation; Products with antimicrobial action..

Figures
Products