1. Academic Validation
  2. A Small-Molecule Compound Has Anti-influenza A Virus Activity by Acting as a ''PB2 Inhibitor"

A Small-Molecule Compound Has Anti-influenza A Virus Activity by Acting as a ''PB2 Inhibitor"

  • Mol Pharm. 2018 Sep 4;15(9):4110-4120. doi: 10.1021/acs.molpharmaceut.8b00531.
Teng Liu 1 Miaomiao Liu 1 Feimin Chen 1 Fangzhao Chen 1 Yuanxin Tian 1 Qi Huang 1 Shuwen Liu 1 Jie Yang 1
Affiliations

Affiliation

  • 1 Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China.
Abstract

With regular influenza epidemics and the prevalence of drug-resistant Influenza Virus strains, it is extremely crucial to develop effective and low-toxicity anti-influenza A virus drugs that act on conserved sites of novel targets. Here, we found a new anti-influenza virus compound, 1,3-dihydroxy-6-benzo[ c]chromene (D715-2441), from a library of 8026 small-molecule compounds by cell-based MTT assay and explored the underlying mechanisms. Our results revealed that D715-2441 possessed Antiviral activities against multiple subtypes of influenza A viruses (IAVs) strains, including H1N1, H5N1, H7N9, H3N2, the clinical isolate 690 (H3), and oseltamivir-resistant strains with the H274Y NA mutation, and suppressed the early steps in the virus replication cycle. Further mechanistic studies indicated that D715-2441 clearly inhibited viral polymerase activity and directly influenced the location of the PB2 protein. Moreover, binding affinity analyses confirmed that D715-2441 bound specifically to the PB2cap protein. Further, protein sequence alignment and a computer-aided molecular docking indicated that highly conserved amino acid residues in the cap-binding pocket of PB2cap were possible binding sites for D715-2441, which indicates that D715-2441 might be employed as a cap-binding competitor. Moreover, the combination of D715-2441 and zanamivir possessed a remarkable synergistic Antiviral effect, with an FICI value of 0.40. In conclusion, these results strongly suggest that D715-2441 has potential as a promising candidate against IAV Infection. More importantly, our work offers novel options for the strategic development of PB2cap inhibitors of IAV.

Keywords

PB2; PB2 cap-binding inhibitor; influenza A virus; viral polymerase; virus replication.

Figures
Products