1. Academic Validation
  2. Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases

Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases

  • Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4311-6. doi: 10.1073/pnas.0910283107.
Emilia S Olson 1 Tao Jiang Todd A Aguilera Quyen T Nguyen Lesley G Ellies Miriam Scadeng Roger Y Tsien
Affiliations

Affiliation

  • 1 Department of Pharmacology, Howard Hughes Medical Institute, Medical Scientist Training Program, University of California at San Diego, La Jolla, CA 92093-0647, USA.
Abstract

High-resolution imaging of molecules intrinsically involved in malignancy and metastasis would be of great value for clinical detection and staging of tumors. We now report in vivo visualization of matrix metalloproteinase activities by MRI and fluorescence of dendrimeric nanoparticles coated with activatable cell penetrating peptides (ACPPs), labeled with Cy5, gadolinium, or both. Uptake of such nanoparticles in tumors is 4- to 15-fold higher than for unconjugated ACPPs. With fluorescent molecules, we are able to detect residual tumor and metastases as small as 200 microm, which can be resected under fluorescence guidance and analyzed histopathologically with fluorescence microscopy. We show that uptake via this mechanism is comparable to that of Other near infrared protease sensors, with the added advantage that the approach is translatable to MRI. Once activated, the Gd-labeled nanoparticles deposit high levels (30-50 microM) of Gd in tumor parenchyma with even higher amounts deposited in regions of infiltrative tumor, resulting in useful T(1) contrast lasting several days after injection. These results should improve MRI-guided clinical staging, presurgical planning, and intraoperative fluorescence-guided surgery. The approach may be generalizable to deliver radiation-sensitizing and chemotherapeutic agents.

Figures
Products
  • Cat. No.
    Product Name
    Description
    Target
    Research Area
  • HY-P11016
    99.63%, linker in ACPPs
    MMP