1. Others
  2. Fluorescent Dye
  3. FITC (solution)

FITC (Fluorescein Isothiocyanate) (solution), is one of the green fluorescein derivatives widely used in biology. FITC has the characteristics of high absorptivity and excellent fluorescence quantum yield. The isothiocyanate group of FITC can be combined with amino, sulfhydryl, imidazole, tyrosyl, carbonyl and other groups on the protein, so as to achieve protein labeling including antibodies and lectins. In addition to its use as a protein marker, FITC can also be used as a fluorescent protein tracer to rapidly identify pathogens by labeling antibodies, or for microsequencing of proteins and peptides (HPLC). The maximum excitation wavelength of FITC is 494 nm. Once excited, it fluoresces yellow-green at a maximum emission wavelength of 520 nm. In addition, FITC is also a hapten that can induce contact hypersensitivity (CHS) and induce an atopic dermatitis model.
Solution Concentration: 20 mM

For research use only. We do not sell to patients.

FITC (solution)

FITC (solution) Chemical Structure

CAS No. : 3326-32-7

Size Price Stock
Solvent
1 mL Ask For Quote & Lead Time
Solvent
2 mL Ask For Quote & Lead Time

* Please select Quantity before adding items.

This product is a controlled substance and not for sale in your territory.

Top Publications Citing Use of Products
  • Biological Activity

  • Purity & Documentation

  • References

  • Customer Review

Description

FITC (Fluorescein Isothiocyanate) (solution), is one of the green fluorescein derivatives widely used in biology. FITC has the characteristics of high absorptivity and excellent fluorescence quantum yield. The isothiocyanate group of FITC can be combined with amino, sulfhydryl, imidazole, tyrosyl, carbonyl and other groups on the protein, so as to achieve protein labeling including antibodies and lectins. In addition to its use as a protein marker, FITC can also be used as a fluorescent protein tracer to rapidly identify pathogens by labeling antibodies, or for microsequencing of proteins and peptides (HPLC). The maximum excitation wavelength of FITC is 494 nm. Once excited, it fluoresces yellow-green at a maximum emission wavelength of 520 nm. In addition, FITC is also a hapten that can induce contact hypersensitivity (CHS) and induce an atopic dermatitis model[1][2][3][4].
Solution Concentration: 20 mM

In Vitro

Protocol

1.Protein Preparetion
1) In order to obtain the best labeling effect, please prepare the protein (antibody) concentration as 2 mg/mL.
2) The pH value of protein solution shall be 8.5±0.5. If the pH is lower than 8.0, 1m sodium bicarbonate shall be used for adjustment.
3) If the protein concentration is lower than 2mg/ml, the labeling efficiency will be greatly reduced. In order to obtain the best labeling efficiency, it is recommended that the final protein concentration range is 2-10 mg/mL.
4) The protein must be in the buffer without primary amine (such as Tris or glycine) and ammonium ion, otherwise the labeling efficiency will be affected.
2.Dye Preparation
Add anhydrous DMSO into the vial of FITC to make a 10 mM stock solution. Mix well by pipetting or vortex.
3.Calculation of dye dosage
The amount of FITC required for reaction depends on the amount of protein to be labeled, and the optimal molar ratio of FITC to protein is about 10.
Example: assuming the required marker protein is 1 mL 2 mg/mL IgG (MW=150,000), use 1 mL DMSO dissolve 1 mg FITC, the required FITC volume is 40 μL.
4.Run conjugation reaction
1) A good volume of freshly prepared 50 μL FITC is slowly added to 0.5 mL protein sample. In solution, gently shake to mix, then centrifuge briefly to collect the sample at the bottom of the reaction tube. Don't mix well to prevent protein samples from denaturation and inactivation.
2) The reaction tubules were placed in a dark place and incubated gently at room temperature for 60 minutes at intervals.For 10-15 minutes, gently reverse the reaction tubules several times to fully mix the two reactants and raise the bar efficiency.
5.Purify the conjugation
The following protocol is an example of dye-protein conjugate purification by using a Sephadex G-25 column.
1) Prepare Sephadex G-25 column according to the manufacture instruction.
2) Load the reaction mixture (From "Run conjugation reaction") to the top of the Sephadex G-25 column.
3) Add PBS (pH 7.2-7.4) as soon as the sample runs just below the top resin surface.
4) Add more PBS (pH 7.2-7.4) to the desired sample to complete the column purification.
Combine the fractions that contain the desired dye-protein conjugate.

Note
1. FITC is sensitive to light and humidity. Immediately add FITC solution and discard the unused part.
2. Low concentrations of sodium azide (≤3 mM or 0.02%) or thiomersal (≤0.02 mM or 0.01%) did not significantly interfere with protein labeling; However, 20-50% glycerol will reduce labeling efficiency.
3. Avoid buffering with primary amines (e.g., Tris, glycine) or ammonium ions,It compete with labeled proteins.
4. This product is only for scientific research by professionals, and shall not be used in clinical diagnosis or treatment, food or medicine.
5. For your safety and health, please wear lab coat and disposable gloves.

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

Molecular Weight

389.38

Formula

C21H11NO5S

CAS No.
SMILES

O=C1OC2(C3=C(OC4=C2C=CC(O)=C4)C=C(O)C=C3)C5=C1C=C(N=C=S)C=C5

Shipping

Room temperature in continental US; may vary elsewhere.

Storage

Please store the product under the recommended conditions in the Certificate of Analysis.

Purity & Documentation
References
  • No file chosen (Maximum size is: 1024 Kb)
  • If you have published this work, please enter the PubMed ID.
  • Your name will appear on the site.
  • Molarity Calculator

  • Dilution Calculator

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass   Concentration   Volume   Molecular Weight *
= × ×

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)
× = ×
C1   V1   C2   V2
Help & FAQs
  • Do most proteins show cross-species activity?

    Species cross-reactivity must be investigated individually for each product. Many human cytokines will produce a nice response in mouse cell lines, and many mouse proteins will show activity on human cells. Other proteins may have a lower specific activity when used in the opposite species.

Your Recently Viewed Products:

Inquiry Online

Your information is safe with us. * Required Fields.

Product Name

 

Requested Quantity *

Applicant Name *

 

Salutation

Email Address *

 

Phone Number *

Department

 

Organization Name *

City

State

Country or Region *

     

Remarks

Bulk Inquiry

Inquiry Information

Product Name:
FITC (solution)
Cat. No.:
HY-DY1007
Quantity:
MCE Japan Authorized Agent: