1. Signaling Pathways
  2. Antibody-drug Conjugate/ADC Related
  3. Radionuclide-Drug Conjugates (RDCs)

Radionuclide-Drug Conjugates (RDCs)

Radionuclide-drug conjugates (RDCs) are one of the most promising development directions for nuclear drug targeted therapy. RDC is composed of targeting element, linker, chelate and radioactive isotope. RDC has advantages in early tumor diagnosis, treatment and postoperative tumor evaluation. The same ligand can be connected to nuclides used for disease diagnosis and treatment respectively, promoting the integration of diagnosis and treatment of RDC drugs. This entry provides molecular intermediates that can be used in the synthesis and research of RDC.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-P10945
    FAP targeting peptide for FXX489
    FAP targeting peptide for FXX489 is the polypeptide part of Unlabeled FXX489 (HY-P10944). Unlabeled FXX489 is a fibroblast activation protein (FAP)-targeting ligand.
    FAP targeting peptide for FXX489
  • HY-W738256
    Maleimide-DTPA
    Maleimide-DTPA (MDTPA) is a monoreactive DTPA derivative (MDTPA) with maleimide group as peptide binding site, which can be combined with radionuclides to prepare radionuclide conjugates (RDC). Maleimide-DTPA can chelate indium-111 (111In) and label peptides and peptides with indium-111. For example, it has high stability when combined with OST7 incubated in human serum, which is better than cyclic cDTPA. Maleimide-DTPA is a good material for medical imaging or treatment.
    Maleimide-DTPA
  • HY-164594
    TA-DOTA-GA
    TA-DOTA-GA is a radionuclide conjugate (RDC), which is capable of binding to a radionuclide. RDC has the ability to specifically target biomolecules and can be used in medical imaging or therapy.
    TA-DOTA-GA
  • HY-164577
    BCN-DOTA-GA
    BCN-DOTA-GA is a cyclooctyne-linked DOTA chelator that can be labeled with radioactive zirconium-89 and used as a radionuclide-labeled drug conjugate (RDC) to target specific biomolecules, cells or tissues.
    BCN-DOTA-GA
  • HY-164592
    DTPA-tetra(tBu)ester
    DTPA-tetra(tBu)ester is a radionuclide conjugate (RDC), which is capable of binding to a radionuclide. RDC has the ability to specifically target biomolecules and can be used in medical imaging or therapy.
    DTPA-tetra(tBu)ester
  • HY-134418R
    NOTA (Standard)
    NOTA (Standard) is the analytical standard of NOTA. This product is intended for research and analytical applications. NOTA is a bifunctional chelate which acts as the framework to construct PET imaging tools. NOTA also can be used for probe design and signal amplification via the multivalent effect. NOTA can be used in multiple myeloma, breast cancer, lymphoma and myocardial infarction research.
    NOTA (Standard)
  • HY-W999782
    Propargyl-DOTA-tris(tBu)ester
    Propargyl-DOTA-tris(tBu)ester is a radionuclide conjugate (RDC), which is capable of binding to a radionuclide. RDC has the ability to specifically target biomolecules and can be used in medical imaging or therapy.
    Propargyl-DOTA-tris(tBu)ester
  • HY-164591
    THP(Bz)3-NH2
    THP(Bz)3-NH2 is a radionuclide conjugate (RDC), which is capable of binding to a radionuclide. RDC has the ability to specifically target biomolecules and can be used in medical imaging or therapy.
    THP(Bz)3-NH2
  • HY-164588
    NH2-PEG4-NODA-GA
    NH2-PEG4-NODA-GA is a NODA-type metal chelator that can bind to radionuclides to prepare radionuclide drug conjugates (RDCs). RDCs have the ability to specifically target biomolecules and can be used in medical imaging or therapy.
    NH2-PEG4-NODA-GA
  • HY-W011118
    DTPA anhydride
    DTPA anhydride is a bifunctional chelator whose anhydride can react with amino groups in proteins (such as lysine residues) to form stable amide bonds. DTPA anhydride can also bind to radionuclides to synthesize radionuclide-labeled drug conjugates (RDCs). RDCs have the ability to specifically target biomolecules and can be used in medical imaging or therapy.
    DTPA anhydride

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.