1. Academic Validation
  2. Therapeutic potential of allosteric HECT E3 ligase inhibition

Therapeutic potential of allosteric HECT E3 ligase inhibition

  • Cell. 2025 May 15;188(10):2603-2620.e18. doi: 10.1016/j.cell.2025.03.001.
Alexander M K Rothman 1 Amir Florentin 2 Florence Zink 3 Catherine Quigley 4 Olivier Bonneau 4 Rene Hemmig 3 Amanda Hachey 4 Tomas Rejtar 4 Maulik Thaker 4 Rishi Jain 4 Shih-Min Huang 4 Daniel Sutton 5 Jan Roger 5 Ji-Hu Zhang 4 Sven Weiler 4 Simona Cotesta 3 Johannes Ottl 3 Salil Srivastava 4 Alina Kordonsky 2 Reut Avishid 2 Elon Yariv 2 Ritu Rathi 2 Oshrit Khvalevsky 2 Thomas Troxler 6 Sarah K Binmahfooz 7 Oded Kleifeld 8 Nicholas W Morrell 9 Marc Humbert 10 Matthew J Thomas 5 Gabor Jarai 5 Rohan E J Beckwith 4 Jennifer S Cobb 4 Nichola Smith 4 Nils Ostermann 3 John Tallarico 4 Duncan Shaw 4 Sabine Guth-Gundel 3 Gali Prag 11 David J Rowlands 12
Affiliations

Affiliations

  • 1 University of Sheffield, Sheffield, UK; Novartis BioMedical Research (NBR), Cambridge, MA, USA. Electronic address: a.rothman@sheffield.ac.uk.
  • 2 School of Neurobiology, Biochemistry and Biophysics, The Life Sciences Faculty, Tel Aviv University, Tel Aviv, Israel.
  • 3 Novartis BioMedical Research (NBR), Basel, Switzerland.
  • 4 Novartis BioMedical Research (NBR), Cambridge, MA, USA.
  • 5 Novartis Institutes for BioMedical Research (NIBR), Horsham, UK.
  • 6 School of Neurobiology, Biochemistry and Biophysics, The Life Sciences Faculty, Tel Aviv University, Tel Aviv, Israel; Novartis BioMedical Research (NBR), Basel, Switzerland.
  • 7 University of Sheffield, Sheffield, UK; Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
  • 8 Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.
  • 9 Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
  • 10 Université Paris-Saclay, INSERM UMR_S 999 (HPPIT), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre (Assistance Publique Hôpitaux de Paris), Le Kremlin Bicêtre, France.
  • 11 School of Neurobiology, Biochemistry and Biophysics, The Life Sciences Faculty, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. Electronic address: prag@tauex.tau.ac.il.
  • 12 Novartis BioMedical Research (NBR), Cambridge, MA, USA. Electronic address: davidjrowlands8@gmail.com.
Abstract

Targeting ubiquitin E3 Ligases is therapeutically attractive; however, the absence of an active-site pocket impedes computational approaches for identifying inhibitors. In a large, unbiased biochemical screen, we discover inhibitors that bind a cryptic cavity distant from the catalytic cysteine of the homologous to E6-associated protein C terminus domain (HECT) E3 Ligase, SMAD ubiquitin regulatory factor 1 (SMURF1). Structural and biochemical analyses and engineered escape mutants revealed that these inhibitors restrict an essential catalytic motion by extending an α helix over a conserved glycine hinge. SMURF1 levels are increased in pulmonary arterial hypertension (PAH), a disease caused by mutation of bone morphogenetic protein receptor-2 (BMPR2). We demonstrated that SMURF1 inhibition prevented BMPR2 ubiquitylation, normalized bone morphogenetic protein (BMP) signaling, restored pulmonary vascular cell homeostasis, and reversed pathology in established experimental PAH. Leveraging this deep mechanistic understanding, we undertook an in silico machine-learning-based screen to identify inhibitors of the prototypic HECT E6AP and confirmed glycine-hinge-dependent allosteric activity in vitro. Inhibiting HECTs and Other glycine-hinge proteins opens a new druggable space.

Keywords

E6AP; HECT; SMURF1; allosteric inhibition; drug discovery; glycine hinge; pulmonary arterial hypertension; small molecule; ubiquitin E3 ligase; vascular remodeling.

Figures
Products