1. Academic Validation
  2. Color-neutral and reversible tissue transparency enables longitudinal deep-tissue imaging in live mice

Color-neutral and reversible tissue transparency enables longitudinal deep-tissue imaging in live mice

  • bioRxiv. 2025 Feb 27:2025.02.20.639185. doi: 10.1101/2025.02.20.639185.
Carl H C Keck 1 2 Elizabeth L Schmidt 1 2 3 Richard H Roth 4 Brendan M Floyd 3 Andy P Tsai 2 5 Hassler B Garcia 2 6 Miao Cui 7 Xiaoyu Chen 8 Chonghe Wang 8 Andrew Park 1 2 Su Zhao 1 2 Pinyu A Liao 3 9 Kerriann M Casey 10 Wencke Reineking 10 Sa Cai 1 2 Ling-Yi Zhang 1 2 Qianru Yang 4 Lei Yuan 11 Ani Baghdasaryan 1 2 Eduardo R Lopez 2 5 Lauren Cooper 1 2 Han Cui 1 2 Daniel Esquivel 3 Kenneth Brinson 1 2 Xiaoke Chen 11 Tony Wyss-Coray 5 Todd P Coleman 2 6 Mark L Brongersma 1 Carolyn R Bertozzi 3 Gordon X Wang 12 Jun B Ding 4 Guosong Hong 1 2
Affiliations

Affiliations

  • 1 Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA.
  • 2 Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA.
  • 3 Department of Chemistry, Stanford University; Stanford, CA, USA.
  • 4 Department of Neurosurgery, Stanford University; Stanford, CA, USA.
  • 5 Department of Neurology and Neurological Sciences, Stanford University; Stanford, CA, USA.
  • 6 Department of Bioengineering, Stanford University; Stanford, CA, USA.
  • 7 Department of Genetics, Stanford University; Stanford, CA, USA.
  • 8 Sonologi; Palo Alto, CA, USA.
  • 9 Department of Computer Science, Stanford University; Stanford, CA, USA.
  • 10 Department of Comparative Medicine, Stanford University; Stanford, CA, USA.
  • 11 Department of Biology, Stanford University; Stanford, CA, USA.
  • 12 Department of Psychiatry and Behavioral Sciences, Stanford University; Stanford, CA, USA.
Abstract

Light scattering in biological tissue presents a significant challenge for deep in vivo imaging. Our previous work demonstrated the ability to achieve optical transparency in live mice using intensely absorbing dye molecules, which created transparency in the red spectrum while blocking shorter-wavelength photons. In this paper, we extend this capability to achieve optical transparency across the entire visible spectrum by employing molecules with strong absorption in the ultraviolet spectrum and sharp absorption edges that rapidly decline upon entering the visible spectrum. This new color-neutral and reversible tissue transparency method enables optical transparency for imaging commonly used fluorophores in the green and yellow spectra. Notably, this approach facilitates tissue transparency for structural and functional imaging of the live mouse brain labeled with yellow fluorescent protein and GCaMP through the scalp and skull. We show that this method enables longitudinal imaging of the same brain regions in awake mice over multiple days during development. Histological analyses of the skin and systemic toxicology studies indicate minimal acute or chronic damage to the skin or body using this approach. This color-neutral and reversible tissue transparency technique opens new opportunities for noninvasive deep-tissue optical imaging, enabling long-term visualization of cellular structures and dynamic activity with high spatiotemporal resolution and chronic tracking capabilities.

Keywords

Kramers-Kronig relations; Major: Physical Sciences; Minor: Applied Physical Sciences; Optical transparency; deep tissue imaging; two-photon microscopy.

Figures