1. Academic Validation
  2. Enhanced cardiac allograft survival by Vav1-Rac signaling blockade in a mouse model

Enhanced cardiac allograft survival by Vav1-Rac signaling blockade in a mouse model

  • Transpl Immunol. 2007 Jul;18(1):53-61. doi: 10.1016/j.trim.2007.03.007.
Shuang Wang 1 Hong Diao Qiunong Guan Anthony M Jevnikar Caigan Du
Affiliations

Affiliation

  • 1 Department of Medicine, The University of Western Ontario, London, Ontario, Canada.
Abstract

Background: Vav1-Rac signaling plays a pivotal role in TCR/antigen and CD28 signals for T cell activation. However, pharmacological interference of this signaling has not been tested in the prevention of alloimmune-mediated allograft rejection. It has been demonstrated that 6-thio-GTP, a metabolite of azathioprine, specifically inhibits Vav1-Rac activity in T lymphocytes. Here we show the immunosuppressive efficacy of 6-thio-GTP in the prevention of cardiac allograft rejection.

Methods: T cell proliferations were measured by (3)H-thymidine uptake. The immunosuppressive activities of 6-thio-GTP were tested in the cardiac allograft model of C57BL/6 (H-2(b)) to Balb/c (H-2(d)) mice.

Results: 6-Thio-GTP inhibited TCR/alloantigen stimulated T cell proliferation and CD28-dependent T cell survival. Administration of 6-thio-GTP (0.5 mg/kg) prolonged graft survival to 13.8+/-2.39 days compared to 8.3+/-0.48 days in PBS controls (p<0.0001). Combination of 6-thio-GTP (0.5 mg/kg) with CsA (15 mg/kg) enhanced graft survival from 15.0+/-1.61 days in CsA treated recipients to 36.8+/-2.17 days in those received 20 days of combination therapy of CsA and 6-thio-GTP (p<0.0001), or to 42.7+/-16.63 days in the group treated with 20 days of CsA and 60 days of 6-thio-GTP (p<0.0001). Lymphocytes from 6-thio-GTP treated recipients with long-term surviving grafts (>60 days) displayed reduced proliferative response to alloantigen and higher frequencies of regulatory T cells (Treg).

Conclusion: Vav1-Rac inhibitor 6-thio-GTP prolongs allograft survival alone or in combination with CsA by suppression of alloreactive T cell activation. Our findings suggest the therapeutic potential of pharmacological interference of Vav1-Rac signaling for transplantation.

Figures
Products