1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. PI3K
  4. PI3Kγ Isoform

PI3Kγ

 

PI3Kγ Related Products (158):

Cat. No. Product Name Effect Purity
  • HY-19312
    3-Methyladenine
    Inhibitor 99.91%
    3-Methyladenine (3-MA) is a PI3K inhibitor. 3-Methyladenine is a widely used inhibitor of autophagy via its inhibitory effect on class III PI3K.
  • HY-18085
    Quercetin
    Inhibitor 99.80%
    Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively.
  • HY-15244
    Alpelisib
    Inhibitor 99.95%
    Alpelisib (BYL-719) is a potent, selective, and orally active PI3Kα inhibitor. Alpelisib (BYL-719) shows efficacy in targeting PIK3CA-mutated cancer. Alpelisib (BYL-719) also inhibits p110α/p110γ/p110δ/p110β with IC50s of 5/250/290/1200 nM, respectively. Antineoplastic activity.
  • HY-111783
    AZD-7648
    Inhibitor 99.86%
    AZD-7648 is a potent, orally active, selective DNA-PK inhibitor with an IC50 of 0.6 nM. AZD-7648 induces apoptosis and shows antitumor activity.
  • HY-13026
    Idelalisib
    Inhibitor 99.78%
    Idelalisib (CAL-101; GS-1101) is a highly selective and orally bioavailable p110δ inhibitor with an IC50 of 2.5 nM, showing 40- to 300-fold selectivity for p110δ over other PI3K class I enzymes.
  • HY-174366
    JMC14
    Inhibitor
    JMC14 is a selective and orally active PI3Kδ and CSF1R inhibitor with IC50 values of 12 nM and 143 nM, respectively. JMC14 preferentially inhibits PI3Kδ-mediated signaling at the cellular level. JMC14 demonstrates potent antitumor activity against B-cell lymphomas and triple-negative breast cancer (TNBC) in both in vitro and vivo studies. JMC14 can be used for the study of antitumor immunity.
  • HY-111783G
    AZD-7648 (GMP)
    Inhibitor
    AZD-7648 (GMP) is AZD-7648 (HY-111783) produced by using GMP guidelines. GMP small molecules works appropriately as an auxiliary reagent for cell therapy manufacture. AZD-7648 is a potent, orally active, selective DNA-PK inhibitor with an IC50 of 0.6 nM. AZD-7648 induces apoptosis and shows antitumor activity.
  • HY-174461
    PROTAC PI3Kα degrader-1
    Degrader
    PROTAC PI3Kα degrader-1 is a PI3Kα PROTAC degrader (DC50 = 0.08 μM), demonstrating good selectivity for PI3Kα degradation over PI3Kβ, PI3Kγ, and PI3Kδ. PROTAC PI3Kα degrader-1 effectively degrades PI3Kα in a time- and concentration-dependent, over PI3Kβ, PI3Ky and PI3Kδ, and potently inhibited the phosphorylation of AKT at the Ser473site. PROTAC PI3Kα degrader-1 shows significant in vivo anticancer efficacy in HGC-27 and DOHH2 xenograft models. (Pink: PI3Kα ligand : (HY-174798), Blue: E3 ligase CRBN Ligand (HY-10984), Black: Linker, E3 ligase ligand-linker conjugate (HY-W940885)).
  • HY-50094
    Pictilisib
    Inhibitor 99.80%
    Pictilisib (GDC-0941) is a potent inhibitor of PI3Kα with an IC50 of 3 nM, with modest selectivity against p110β (11-fold) and p110γ (25-fold).
  • HY-70063
    Buparlisib
    Inhibitor 99.90%
    Buparlisib (BKM120; NVP-BKM120) is a pan-class I PI3K inhibitor, with IC50s of 52, 166, 116 and 262 nM for p110α, p110β, p110δ and p110γ, respectively.
  • HY-17044
    Duvelisib
    Inhibitor 99.88%
    Duvelisib (IPI-145) is a selectivite p100δ inhibitor with IC50 of 2.5 nM, 27.4 nM, 85 nM and 1602 nM for p110δ, P110γ, p110β and p110α, respectively.
  • HY-50673
    Dactolisib
    Inhibitor 99.94%
    Dactolisib (BEZ235) is an orally active and dual pan-class I PI3K and mTOR kinase inhibitor with IC50s of 4 nM/5 nM/7 nM/75 nM, and 20.7 nM for p110α/p110γ/p110δ/p110β and mTOR, respectively. Dactolisib (BEZ235) inhibits both mTORC1 and mTORC2.
  • HY-15346
    Copanlisib
    Inhibitor 99.50%
    Copanlisib (BAY 80-6946) is a potent, selective and ATP-competitive pan-class I PI3K inhibitor, with IC50s of 0.5 nM, 0.7 nM, 3.7 nM and 6.4 nM for PI3Kα, PI3Kδ, PI3Kβ and PI3Kγ, respectively. Copanlisib has more than 2,000-fold selectivity against other lipid and protein kinases, except for mTOR. Copanlisib has superior antitumor activity.
  • HY-100716
    Eganelisib
    Inhibitor 99.68%
    Eganelisib (IPI549) is a potent and selective PI3Kγ inhibitor with an IC50 of 16 nM. Eganelisib shows >100-fold selectivity over other lipid and protein kinases.
  • HY-10297
    Omipalisib
    Inhibitor 99.94%
    Omipalisib (GSK2126458) is an orally active and highly selective inhibitor of PI3K with Kis of 0.019 nM/0.13 nM/0.024 nM/0.06 nM and 0.18 nM/0.3 nM for p110α/β/δ/γ, mTORC1/2, respectively. Omipalisib has anti-cancer activity.
  • HY-10115
    PI-103
    Inhibitor 99.82%
    PI-103 is a potent PI3K and mTOR inhibitor with IC50s of 8 nM, 88 nM, 48 nM, 150 nM, 20 nM, and 83 nM for p110α, p110β, p110δ, p110γ, mTORC1, and mTORC2. PI-103 also inhibits DNA-PK with an IC50 of 2 nM. PI-103 induces autophagy.
  • HY-15346A
    Copanlisib dihydrochloride
    Inhibitor 99.55%
    Copanlisib dihydrochloride (BAY 80-6946 dihydrochloride) is a potent, selective and ATP-competitive pan-class I PI3K inhibitor, with IC50s of 0.5 nM, 0.7 nM, 3.7 nM and 6.4 nM for PI3Kα, PI3Kδ, PI3Kβ and PI3Kγ, respectively. Copanlisib dihydrochloride has more than 2,000-fold selectivity against other lipid and protein kinases, except for mTOR. Copanlisib dihydrochloride has superior antitumor activity.
  • HY-124719
    hSMG-1 inhibitor 11j
    Inhibitor 99.82%
    hSMG-1 inhibitor 11j, a pyrimidine derivative, is a potent and selective inhibitor of hSMG-1, with an IC50 of 0.11 nM. hSMG-1 inhibitor 11j exhibits >455-fold selectivity for hSMG-1 over mTOR (IC50=50 nM), PI3Kα (IC50=92/60 nM) and CDK1/CDK2 (IC50=32/7.1 μM). hSMG-1 inhibitor 11j can be used for the research of cancer.
  • HY-13898
    Taselisib
    Inhibitor 99.75%
    Taselisib (GDC-0032) is a potent PI3K inhibitor targets PIK3CA mutations, with Kis of 0.12 nM, 0.29 nM, 0.97 nM, and 9.1 nM for PI3Kδ, PI3Kα, PI3Kγ and PI3Kβ, respectively.
  • HY-10681
    Gedatolisib
    Inhibitor 99.68%
    Gedatolisib (PKI-587) is a highly potent dual inhibitor of PI3Kα, PI3Kγ, and mTOR with IC50s of 0.4 nM, 5.4 nM and 1.6 nM, respectively. Gedatolisib is equally effective in both complexes of mTOR, mTORC1 and mTORC2.