1. Metabolic Enzyme/Protease
  2. Liposome
  3. SM-102

SM-102 (GMP) is SM-102 (HY-134541) produced by using GMP guidelines. GMP small molecules works appropriately as an auxiliary reagent for cell therapy manufacture. SM-102 is an amino cationic lipid useful in the formation of lipid nanoparticles (LNPs). SM-102 has higher transfection efficiency. SM-102 plays an important role in the effectiveness of lipid nanoparticles (LNPs) in delivering mRNA therapeutics and vaccines.

For research use only. We do not sell to patients.

SM-102

SM-102 Chemical Structure

CAS No. : 2089251-47-6

Size Stock
50 mg   Get quote  
100 mg   Get quote  
250 mg   Get quote  

* Please select Quantity before adding items.

This product is a controlled substance and not for sale in your territory.

Top Publications Citing Use of Products
  • Biological Activity

  • Purity & Documentation

  • References

  • Customer Review

Description

SM-102 (GMP) is SM-102 (HY-134541) produced by using GMP guidelines. GMP small molecules works appropriately as an auxiliary reagent for cell therapy manufacture. SM-102 is an amino cationic lipid useful in the formation of lipid nanoparticles (LNPs). SM-102 has higher transfection efficiency. SM-102 plays an important role in the effectiveness of lipid nanoparticles (LNPs) in delivering mRNA therapeutics and vaccines[1][2].

In Vitro

Preparation of Lipid Nanoparticles[3][4]

Here we provide lipid molar ratios for LNPs in FDA-approved mRNA-1273 (a COVID-19 mRNA vaccine). The molar ratio of lipids in this formulation is SM-102 : DSPC : Cholesterol : DMG-PEG 2000 = 50 : 10 : 38.5 : 1.5[1], and RNA to lipid weight ratio is 0.05 (wt/wt).

A. Lipid Mixture Preparation

1. Dissolve lipids in ethanol and prepare 10 mg/mL stock solutions. The lipid stock solutions can be stored at 20°C for later use.

Note 1: The ionizable lipid is usually a liquid. Due to the viscosity, it should always be weighed rather than relying on the autopipette volume.

Note 2: Cholesterol in solution should be kept warm (>37°C) to maintain fluidity. Transfer the cholesterol solution promptly to avoid cooling.

2. Prepare the lipid mixture solution as described. For each mL of lipid mixture add the following: 572 μL of 10 mg/mL SM-102 (HY-134541), 240 μL of 10 mg/mL Cholesterol (HY-N0322), 127 μL of 10 mg/mL DSPC (HY-W040193), and 61 μL of DMG-PEG 2000 (HY-112764). Mix the solutions thoroμghly to achieve a clear solution. This mixture contains 10 mg of total lipid.

Note 3: The choice of lipids and ratios may be changed as desired and this will affect the LNP properties (size, polydispersity, and efficacy) and the amount of mRNA required.

B. mRNA Preparation

1. Prepare a 166.7 μg/mL mRNA solution with 100 mM pH 5 sodium acetate buffer.

Note 4: The lipid:mRNA weight ratio influences the encapsulation efficiency. Other weight ratios may be prepared as alternative formulations and should be adjusted accordingly by user.

C. Mixing

There are three commonly used methods to achieve rapid mixing of the solutions: the pipette mixing method, the vortex mixing method, and the microfluidic mixing method. All these mixing methods can be used for various applications.

It is important to note that pipette mixing method and vortex mixing method may yield more heterogeneous LNPs with lower encapsulation efficiencies and is prone to variability. Microfluidic devices enable rapid mixing in a highly controllable, reproducible manner that achieves homogeneous LNPs and high encapsulation efficiency. Within these devices, the ethanolic lipid mixture and aqueous solution are rapidly combined in individual streams. LNPs are formed as the two streams mix and are then collected into a single collection tube.

1. Pipette Mixing Method:

1.1. Pipette 3 mL of the mRNA solution and quickly add it into 1 mL of the lipid mixture solution (A 1:3 ratio of ethanolic lipid mixture to aqueous buffer is generally used.) Pipette up and down rapidly for 20-30 seconds.

1.2. Incubate the resulting solution at room temperature for up to 15 minutes.

1.3. After mixing, the LNPs were dialyzed against PBS (pH 7.4) for 2 h, sterile filtered using 0.2 μm filters, and stored at 4°C.

2. Vortex Mixing Method:

1.1. Vortex 3 mL of mRNA solution at a moderate speed on the vortex mixer. Then, Quickly add 1 mL of the lipid mixture solution into the vortexing solution (A 1:3 ratio of ethanolic lipid mixture to aqueous buffer is generally used.). Continue vortexing the resulting dispersion for another 20-30 seconds.

1.2. Incubate the resulting solution at room temperature for up to 15 minutes.

1.3. After mixing, the LNPs were dialyzed against PBS (pH 7.4) for 2 h, sterile filtered using 0.2 μm filters, and stored at 4°C.

3. Microfluidic Mixing Method:

1.1 The 3 mL of mRNA buffer solution and 1 mL of the lipid mixture solution were mixed at a total flow rate of 12 mL/min in a microfluidic device (A 1:3 ratio of ethanolic lipid mixture to aqueous buffer is generally used.).

Note 5: Parameters such as the flow rate ratio and total flow rate can be altered to fine-tune LNPs.

1.2. After mixing, the LNPs were dialyzed against PBS (pH 7.4) for 2 h, sterile filtered using 0.2 μm filters, and stored at 4°C.

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

Molecular Weight

710.17

Formula

C44H87NO5

CAS No.
SMILES

O=C(OC(CCCCCCCC)CCCCCCCC)CCCCCCCN(CCO)CCCCCC(OCCCCCCCCCCC)=O

Shipping

Room temperature in continental US; may vary elsewhere.

Storage

Please store the product under the recommended conditions in the Certificate of Analysis.

Purity & Documentation
References
  • No file chosen (Maximum size is: 1024 Kb)
  • If you have published this work, please enter the PubMed ID.
  • Your name will appear on the site.

SM-102 Related Classifications

  • Molarity Calculator

  • Dilution Calculator

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass   Concentration   Volume   Molecular Weight *
= × ×

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)
× = ×
C1   V1   C2   V2
Help & FAQs
  • Do most proteins show cross-species activity?

    Species cross-reactivity must be investigated individually for each product. Many human cytokines will produce a nice response in mouse cell lines, and many mouse proteins will show activity on human cells. Other proteins may have a lower specific activity when used in the opposite species.

Your Recently Viewed Products:

Inquiry Online

Your information is safe with us. * Required Fields.

Product Name

 

Requested Quantity *

Applicant Name *

 

Salutation

Email Address *

 

Phone Number *

Department

 

Organization Name *

City

State

Country or Region *

     

Remarks

Bulk Inquiry

Inquiry Information

Product Name:
SM-102
Cat. No.:
HY-134541G
Quantity:
MCE Japan Authorized Agent: