1. Academic Validation
  2. Saturated phosphatidic acids induce mTORC1-driven integrated stress response contributing to glucolipotoxicity in hepatocytes

Saturated phosphatidic acids induce mTORC1-driven integrated stress response contributing to glucolipotoxicity in hepatocytes

  • Am J Physiol Gastrointest Liver Physiol. 2025 Jun 1;328(6):G663-G676. doi: 10.1152/ajpgi.00027.2025.
Rui Guo 1 Yanhui Li 1 Yuwei Jiang 2 Md Wasim Khan 3 Brian T Layden 3 Zhenyuan Song 1
Affiliations

Affiliations

  • 1 Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States.
  • 2 Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, Illinois, United States.
  • 3 Department of Medicine, University of Illinois Chicago, Chicago, Illinois, United States.
Abstract

Hepatic glucolipotoxicity, characterized by the synergistic detrimental effects of elevated glucose levels combined with excessive lipid accumulation in hepatocytes, plays a central role in the pathogenesis of various metabolic liver diseases. Despite recent advancements, the precise mechanisms underlying this process remain unclear. Using cultured AML12 and HepG2 cells exposed to excess palmitate, with and without high glucose, as an in vitro model, we aimed to elucidate the cellular and molecular mechanisms underlying hepatic glucolipotoxicity. Our data showed that palmitate exposure induced the integrated stress response (ISR) in hepatocytes, evidenced by increased eukaryotic translation initiation factor 2 alpha (eIF2α) phosphorylation (serine 51) and upregulated activating transcription factor 4 (ATF4) expression. Moreover, we identified mammalian target of rapamycin complex 1 (mTORC1) as a novel upstream kinase responsible for palmitate-triggered ISR induction. Furthermore, we showed that either mTORC1 inhibitors, ISRIB (an ISR inhibitor), or ATF4 knockdown abolished palmitate-induced cell death, indicating that the mTORC1-eIF2α-ATF4 pathway activation plays a mechanistic role in mediating palmitate-induced hepatocyte cell death. Our continuous investigations revealed that glycerol-3-phosphate Acyltransferase (GPAT4)-mediated metabolic flux of palmitate into the glycerolipid synthesis pathway is required for palmitate-induced mTORC1 activation and subsequent ISR induction. Specifically, we uncovered that saturated phosphatidic acid production contributes to palmitate-triggered mTORC1 activation. Our study provides the first evidence that high glucose enhances palmitate-induced activation of the mTORC1-eIF2α-ATF4 pathway, thereby exacerbating palmitate-induced hepatotoxicity. This effect is mediated by the increased availability of glycerol-3-phosphate, a substrate essential for phosphatidic acid synthesis. In conclusion, our study highlights that the activation of the mTORC1-eIF2α-ATF4 pathway, driven by saturated phosphatidic acid overproduction, plays a mechanistic role in hepatic glucolipotoxicity.NEW & NOTEWORTHY Integrated stress response (ISR) activation contributes to palmitate-induced lipotoxicity in hepatocytes. mTORC1 acts as an upstream kinase essential for palmitate-mediated ISR activation and hepatocyte death. The formation of saturated phosphatidic acid mechanistically regulates hepatic mTORC1 activation induced by palmitate. Glucose-enhanced generation of saturated phosphatidic acid amplifies palmitate-induced hepatotoxicity, contributing to glucolipotoxicity.

Keywords

ISR; glucolipotoxicity; mTORC1; palmitate; phosphatidic acid.

Figures
Products