1. Metabolic Enzyme/Protease
  2. Liposome
  3. 5A2-SC8 TFA

5A2-SC8 TFA is an ionizable amino lipid in lipid nanoparticles (LNPs) that shows high delivery potential and low in vivo toxicity, enabling efficient delivery of small RNAs such as siRNA and miRNA into tumor cells. 5A2-SC8 TFA LNPs can confer a unique delivery fate of RNA within the liver, thereby changing the therapeutic outcomes in cancer models.

For research use only. We do not sell to patients.

5A2-SC8 TFA Chemical Structure

5A2-SC8 TFA Chemical Structure

Size Price Stock Quantity
1 mg In-stock
5 mg In-stock
10 mg   Get quote  
50 mg   Get quote  

* Please select Quantity before adding items.

This product is a controlled substance and not for sale in your territory.

Customer Review

Based on 1 publication(s) in Google Scholar

Other Forms of 5A2-SC8 TFA:

Top Publications Citing Use of Products

1 Publications Citing Use of MCE 5A2-SC8 TFA

  • Biological Activity

  • Purity & Documentation

  • References

  • Customer Review

Description

5A2-SC8 TFA is an ionizable amino lipid in lipid nanoparticles (LNPs) that shows high delivery potential and low in vivo toxicity, enabling efficient delivery of small RNAs such as siRNA and miRNA into tumor cells. 5A2-SC8 TFA LNPs can confer a unique delivery fate of RNA within the liver, thereby changing the therapeutic outcomes in cancer models[1][2][3].

In Vitro

The ApoE protein corona adsorbs on the surface of 5A2-SC8 LNPs binds to LDL-R on the surface of hepatocytes and undergoes receptor-mediated endocytosis, and is taken up by hepatocytes[2].

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

5A2-SC8 (75 mg/kg; i.v.; single-dose) is well tolerated and does not affect survival in mice with chronic aggressive hepatocellular carcinoma[1].
5A2-SC8 (0.5 mg/kg; i.v.; single-dose) can pass the first barrier of Kupffer cells in the liver and be internalized into hepatocytes in the presence of siFVII labeled with Cy5.5 dye[2].

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

Molecular Weight

1841.72 (free base)

Formula

C93H173N5O20S5.xC2HF3O2

Appearance

Viscous Liquid

Color

Colorless to light yellow

SMILES

O=C(CCN(CCNCCN(CCC(OCCOC(C(CSCCCCCCCC)C)=O)=O)CCC(OCCOC(C(CSCCCCCCCC)C)=O)=O)CCNCCN(CCC(OCCOC(C(CSCCCCCCCC)C)=O)=O)CCC(OCCOC(C(CSCCCCCCCC)C)=O)=O)OCCOC(C(CSCCCCCCCC)C)=O.OC(C(F)(F)F)=O.[x]

Shipping

Shipping with dry ice.

Storage

-80°C, protect from light, stored under nitrogen

Solvent & Solubility
In Vitro: 

DMSO : 100 mg/mL (Need ultrasonic; Hygroscopic DMSO has a significant impact on the solubility of product, please use newly opened DMSO)

  • Molarity Calculator

  • Dilution Calculator

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass
=
Concentration
×
Volume
×
Molecular Weight *

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Concentration (start)

C1

×
Volume (start)

V1

=
Concentration (final)

C2

×
Volume (final)

V2

In Vivo:

Select the appropriate dissolution method based on your experimental animal and administration route.

For the following dissolution methods, please ensure to first prepare a clear stock solution using an In Vitro approach and then sequentially add co-solvents:
To ensure reliable experimental results, the clarified stock solution can be appropriately stored based on storage conditions. As for the working solution for in vivo experiments, it is recommended to prepare freshly and use it on the same day.
The percentages shown for the solvents indicate their volumetric ratio in the final prepared solution. If precipitation or phase separation occurs during preparation, heat and/or sonication can be used to aid dissolution.

  • Protocol 1

    Add each solvent one by one:  10% DMSO    40% PEG300    5% Tween-80    45% Saline

    Solubility: ≥ 2.5 mg/mL; Clear solution

    This protocol yields a clear solution of ≥ 2.5 mg/mL (saturation unknown).

    Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (25.0 mg/mL) to 400 μL PEG300, and mix evenly; then add 50 μL Tween-80 and mix evenly; then add 450 μL Saline to adjust the volume to 1 mL.

    Preparation of Saline: Dissolve 0.9 g sodium chloride in ddH₂O and dilute to 100 mL to obtain a clear Saline solution.
  • Protocol 2

    Add each solvent one by one:  10% DMSO    90% Corn Oil

    Solubility: ≥ 2.5 mg/mL; Clear solution

    This protocol yields a clear solution of ≥ 2.5 mg/mL (saturation unknown). If the continuous dosing period exceeds half a month, please choose this protocol carefully.

    Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (25.0 mg/mL) to 900 μL Corn oil, and mix evenly.

In Vivo Dissolution Calculator
Please enter the basic information of animal experiments:

Dosage

mg/kg

Animal weight
(per animal)

g

Dosing volume
(per animal)

μL

Number of animals

Recommended: Prepare an additional quantity of animals to account for potential losses during experiments.
Please enter your animal formula composition:
%
DMSO +
+
%
Tween-80 +
%
Saline
Recommended: Keep the proportion of DMSO in working solution below 2% if your animal is weak.
The co-solvents required include: DMSO, . All of co-solvents are available by MedChemExpress (MCE). , Tween 80. All of co-solvents are available by MedChemExpress (MCE).
Calculation results:
Working solution concentration: mg/mL
Method for preparing stock solution: mg drug dissolved in μL  DMSO (Stock solution concentration: mg/mL).
The concentration of the stock solution you require exceeds the measured solubility. The following solution is for reference only. If necessary, please contact MedChemExpress (MCE).
Method for preparing in vivo working solution for animal experiments: Take μL DMSO stock solution, add μL . μL , mix evenly, next add μL Tween 80, mix evenly, then add μL Saline.
 If the continuous dosing period exceeds half a month, please choose this protocol carefully.
Please ensure that the stock solution in the first step is dissolved to a clear state, and add co-solvents in sequence. You can use ultrasonic heating (ultrasonic cleaner, recommended frequency 20-40 kHz), vortexing, etc. to assist dissolution.
Purity & Documentation
References
  • No file chosen (Maximum size is: 1024 Kb)
  • If you have published this work, please enter the PubMed ID.
  • Your name will appear on the site.
Help & FAQs
  • Do most proteins show cross-species activity?

    Species cross-reactivity must be investigated individually for each product. Many human cytokines will produce a nice response in mouse cell lines, and many mouse proteins will show activity on human cells. Other proteins may have a lower specific activity when used in the opposite species.

Your Recently Viewed Products:

Inquiry Online

Your information is safe with us. * Required Fields.

Product Name

 

Requested Quantity *

Applicant Name *

 

Salutation

Email Address *

 

Phone Number *

Department

 

Organization Name *

City

State

Country or Region *

     

Remarks

Bulk Inquiry

Inquiry Information

Product Name:
5A2-SC8 TFA
Cat. No.:
HY-145799A
Quantity:
MCE Japan Authorized Agent: