1. Academic Validation
  2. IL-25 regulates the expression of adhesion molecules on eosinophils: mechanism of eosinophilia in allergic inflammation

IL-25 regulates the expression of adhesion molecules on eosinophils: mechanism of eosinophilia in allergic inflammation

  • Allergy. 2006 Jul;61(7):878-85. doi: 10.1111/j.1398-9995.2006.01102.x.
P F Y Cheung 1 C K Wong W K Ip C W K Lam
Affiliations

Affiliation

  • 1 Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, NT, Hong Kong.
Abstract

Background: Interleukin-25 (IL-25) is a novel T-helper-2 (Th2) cytokine of the IL-17 family that plays a key role in allergic inflammation. Recent studies reported that over-expression of IL-25 in mouse induces eosinophilia. We investigated the effect of IL-25 on the expression of several adhesion molecules on human eosinophils and the underlying intracellular mechanisms.

Methods: Viability of eosinophils was measured by annexin V-fluorescein isothiocyanate (FITC) assay. Gene expression and surface expression of intercellular adhesion molecule (ICAM)-1 (CD54), ICAM-3 (CD50), L-selectin (CD62L), leukocyte function-associated antigen (LFA-1) (CD11a/CD18) and very late antigen-4 (VLA-4, CD49d/CD29) on eosinophils were measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and flow cytometry, respectively. Adhesion of eosinophils to fibronectin was assessed using the fibronectin-coated insert system.

Results: Viability of eosinophils was significantly enhanced by IL-25 from 41% to 76% dose-dependently. IL-25 could significantly upregulate the surface expression of ICAM-1, but suppress those of ICAM-3 and L-selectin on eosinophils in a dose-dependent manner. Adhesion of eosinophils to fibronectin was also significantly enhanced by IL-25. Besides, pre-incubation with p38 mitogen-activated protein kinases (MAPK) inhibitor SB203580, c-Jun NH2-terminal protein kinases (JNK) inhibitor SP600125 and proteosome inhibitor MG-132 could significantly restrain the effects of IL-25 on surface expression of L-selectin, ICAM-1 and ICAM-3, respectively, and also on the adhesion of eosinophils onto fibronectin (all P < 0.05).

Conclusions: Our findings suggest an essential role of IL-25 in enhancing survival and regulating surface expression of ICAM-1, ICAM-3 and L-selectin on human eosinophils through the activation of p38 MAPK, JNK and nuclear factor (NF)-kappaB pathways, thereby shedding light on the molecular mechanisms of IL-25-induced eosinophilia in allergic inflammation.

Figures
Products