Search Result
Results for "
PEG-3000
" in MedChemExpress (MCE) Product Catalog:
64
Biochemical Assay Reagents
| Cat. No. |
Product Name |
Target |
Research Areas |
Chemical Structure |
-
- HY-Y0873N
-
PEG3000
2 Publications Verification
Polyethylene glycol 3000
|
Biochemical Assay Reagents
|
Others
|
|
PEG3000 (Polyethylene glycol 3000) is a solvent for a large number of substances. PEG3000 can be used as a carrier material and modifying agent. PEG3000 is widely used in a variety of pharmaceutical formulations .
|
-
-
- HY-155933
-
|
DOPE-PEG3000 ammonium; 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-3000] ammonium
|
Liposome
|
Others
|
|
18:1 PEG3000 PE ammonium (DOPE-PEG3000 ammonium) is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
|
-
-
- HY-155928
-
|
14:0 PEG3000 PE ammonium; 1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-3000] ammonium
|
Liposome
|
Others
|
|
DMPE-PEG3000 ammonium (14:0 PEG3000 PE ammonium) is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
|
-
-
- HY-167006
-
|
PLGA10000-PEG3000-Vinylsulfone
|
Biochemical Assay Reagents
|
Others
|
|
PLGA10000-PEG3000-VS (PLGA10000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
-
- HY-167032
-
|
PLGA4000-PEG3000-Vinylsulfone
|
Biochemical Assay Reagents
|
Others
|
|
PLGA4000-PEG3000-VS (PLGA4000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
-
- HY-167062
-
|
PLLA2000-PEG3000-Vinylsulfone
|
Biochemical Assay Reagents
|
Others
|
|
PLLA2000-PEG3000-VS (PLLA2000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
-
- HY-167018
-
|
PLGA2000-PEG3000-Vinylsulfone
|
Biochemical Assay Reagents
|
Others
|
|
PLGA2000-PEG3000-VS (PLGA2000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
-
- HY-167037
-
|
PLGA5000-PEG3000-Vinylsulfone
|
Biochemical Assay Reagents
|
Others
|
|
PLGA5000-PEG3000-VS (PLGA5000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
-
- HY-167043
-
|
PLLA10000-PEG3000-Vinylsulfone
|
Biochemical Assay Reagents
|
Others
|
|
PLLA10000-PEG3000-VS (PLLA10000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
-
- HY-167058
-
|
PLLA3000-PEG3000-Vinylsulfone
|
Biochemical Assay Reagents
|
Others
|
|
PLLA3000-PEG3000-VS (PLLA3000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
-
- HY-167053
-
|
PLLA4000-PEG3000-Vinylsulfone
|
Biochemical Assay Reagents
|
Others
|
|
PLLA4000-PEG3000-VS (PLLA4000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
-
- HY-167041
-
|
PLLA5000-PEG3000-Vinylsulfone
|
Biochemical Assay Reagents
|
Others
|
|
PLLA5000-PEG3000-VS (PLLA5000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
-
- HY-167050
-
|
PLLA1000-PEG3000-Vinylsulfone
|
Biochemical Assay Reagents
|
Others
|
|
PLLA1000-PEG3000-VS (PLLA1000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
-
- HY-167026
-
|
PLGA3000-PEG3000-Vinylsulfone
|
Biochemical Assay Reagents
|
Others
|
|
PLGA3000-PEG3000-VS (PLGA3000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
-
- HY-167010
-
|
PLGA1000-PEG3000-Vinylsulfone
|
Biochemical Assay Reagents
|
Others
|
|
PLGA1000-PEG3000-VS (PLGA1000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
-
- HY-167405
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA1000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG3000-ALK can be used in drug delivery research .
|
-
-
- HY-167409
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA10000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA10000-PEG3000-ALK can be used in drug delivery research .
|
-
-
- HY-167393
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA4000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG3000-ALK can be used in drug delivery research .
|
-
-
- HY-167389
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA5000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG3000-ALK can be used in drug delivery research .
|
-
-
- HY-167401
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA2000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG3000-ALK can be used in drug delivery research .
|
-
-
- HY-167397
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA3000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG3000-ALK can be used in drug delivery research .
|
-
-
- HY-167478
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA3000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA3000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
-
- HY-167470
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA5000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA5000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
-
- HY-167474
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA4000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA4000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
-
- HY-167482
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA2000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA2000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
-
- HY-167486
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA1000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA1000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
-
- HY-167490
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA10000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA10000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
-
- HY-167303
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA3000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA3000-PEG3000-Thiol can be used in drug delivery research .
|
-
-
- HY-167335
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA1000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA1000-PEG3000-SPDP can be used in drug delivery research .
|
-
-
- HY-167299
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA4000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA4000-PEG3000-Thiol can be used in drug delivery research .
|
-
-
- HY-167295
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA5000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA5000-PEG3000-Thiol can be used in drug delivery research .
|
-
-
- HY-167311
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA1000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA1000-PEG3000-Thiol can be used in drug delivery research .
|
-
-
- HY-167331
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA2000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA2000-PEG3000-SPDP can be used in drug delivery research .
|
-
-
- HY-167315
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA10000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA10000-PEG3000-Thiol can be used in drug delivery research .
|
-
-
- HY-167327
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA3000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA3000-PEG3000-SPDP can be used in drug delivery research .
|
-
-
- HY-167323
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA4000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA4000-PEG3000-SPDP can be used in drug delivery research .
|
-
-
- HY-167339
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA10000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA10000-PEG3000-SPDP can be used in drug delivery research .
|
-
-
- HY-167307
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA2000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA2000-PEG3000-Thiol can be used in drug delivery research .
|
-
-
- HY-167319
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA5000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA5000-PEG3000-SPDP can be used in drug delivery research .
|
-
-
- HY-167464
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA10000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA10000-PEG3000-N3 can be used in drug delivery research .
|
-
-
- HY-167444
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA5000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA5000-PEG3000-N3 can be used in drug delivery research .
|
-
-
- HY-167456
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA2000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA2000-PEG3000-N3 can be used in drug delivery research .
|
-
-
- HY-167452
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA3000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA3000-PEG3000-N3 can be used in drug delivery research .
|
-
-
- HY-167460
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA1000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA1000-PEG3000-N3 can be used in drug delivery research .
|
-
-
- HY-167448
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA4000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA4000-PEG3000-N3 can be used in drug delivery research .
|
-
-
- HY-167440
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA10000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA10000-PEG3000-NH2 can be used in drug delivery research .
|
-
-
- HY-167431
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA2000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA2000-PEG3000-NH2 can be used in drug delivery research .
|
-
-
- HY-167418
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA5000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA5000-PEG3000-NH2 can be used in drug delivery research .
|
-
-
- HY-167436
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA1000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA1000-PEG3000-NH2 can be used in drug delivery research .
|
-
-
- HY-167426
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA3000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA3000-PEG3000-NH2 can be used in drug delivery research .
|
-
- HY-167422
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA4000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA4000-PEG3000-NH2 can be used in drug delivery research .
|
-
- HY-167343
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA5000-PEG3000-PLLA5000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA5000-PEG3000-PLLA5000 can be used in drug delivery research .
|
-
- HY-167126
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA6000-PEG3000-PLLA6000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA6000-PEG3000-PLLA6000 can be used in drug delivery research .
|
-
- HY-167367
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA1000-PEG3000-PLLA1000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA1000-PEG3000-PLLA1000 can be used in drug delivery research .
|
-
- HY-167349
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA4000-PEG3000-PLLA4000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA4000-PEG3000-PLLA4000 can be used in drug delivery research .
|
-
- HY-167361
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA2000-PEG3000-PLLA2000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA2000-PEG3000-PLLA2000 can be used in drug delivery research .
|
-
- HY-167355
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA3000-PEG3000-PLLA3000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA3000-PEG3000-PLLA3000 can be used in drug delivery research .
|
-
- HY-167136
-
|
|
Biochemical Assay Reagents
|
Others
|
|
PLLA8000-PEG3000-PLLA8000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA8000-PEG3000-PLLA8000 can be used in drug delivery research .
|
-
- HY-172279B
-
|
|
Liposome
|
Infection
|
|
DSPE-PEG3000-TAT is a PEG compound which composed of DSPE and a cell-penetrating peptide (TAT) (HY-P0281). DSPE-PEG3000-TAT can be used for drug delivery .
|
-
- HY-144012E
-
|
16:0 PEG3000 PE; 1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-3000] ammonium
|
Liposome
|
Others
|
|
DPPE-PEG3000 is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
|
-
- HY-172495
-
|
|
Liposome
Integrin
|
Cancer
|
|
DSPE-PEG3000-iRGD is a PEG compound which composed of DSPE and an αv-integrins targeting peptide (iRGD). iRGD peptide binds to αv-integrins, and then proteolytically cleaved in the tumor to produce CRGDK/R to interact with neuropilin-1, and has tumor-targeting and tumor-penetrating properties. DSPE-PEG3000-iRGD can be used for drug delivery .
|
-
- HY-172712
-
|
|
Liposome
|
Cancer
|
|
DSPE-PEG3000-R6H4 is a PEG compound which composed of DSPE and pH responsive membrane-penetrating peptide (R6H4). R6H4 can be used for pH responsive anticancer drug delivery purposes. DSPE-PEG3000-R6H4 can be used for drug delivery .
|
-
- HY-172271B
-
|
|
Liposome
|
Cancer
|
|
DSPE-PEG3000-LyP-1 is a PEG compound which composed of DSPE and a nine residue peptide (LyP-1) (HY-P2526). LyP-1 targets tumor-associated lymphatic vessels and macrophages .
|
-
- HY-172483
-
|
|
Liposome
|
Cancer
|
|
DSPE-PEG3000-TAASGVRSMH is a PEG compound which composed of DSPE and TAASGVRSMH. TAASGVRSMH has a strong affinity for the NG2 proteoglycan on the PC membrane. DSPE-PEG3000-TAASGVRSMH can be used for drug delivery .
|
-
| Cat. No. |
Product Name |
Type |
-
- HY-Y0873N
-
PEG3000
2 Publications Verification
Polyethylene glycol 3000
|
Co-solvents
|
|
PEG3000 (Polyethylene glycol 3000) is a solvent for a large number of substances. PEG3000 can be used as a carrier material and modifying agent. PEG3000 is widely used in a variety of pharmaceutical formulations .
|
-
- HY-155933
-
|
DOPE-PEG3000 ammonium; 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-3000] ammonium
|
Drug Delivery
|
|
18:1 PEG3000 PE ammonium (DOPE-PEG3000 ammonium) is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
|
-
- HY-155928
-
|
14:0 PEG3000 PE ammonium; 1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-3000] ammonium
|
Drug Delivery
|
|
DMPE-PEG3000 ammonium (14:0 PEG3000 PE ammonium) is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
|
-
- HY-167006
-
|
PLGA10000-PEG3000-Vinylsulfone
|
Drug Delivery
|
|
PLGA10000-PEG3000-VS (PLGA10000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
- HY-167032
-
|
PLGA4000-PEG3000-Vinylsulfone
|
Drug Delivery
|
|
PLGA4000-PEG3000-VS (PLGA4000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
- HY-167062
-
|
PLLA2000-PEG3000-Vinylsulfone
|
Drug Delivery
|
|
PLLA2000-PEG3000-VS (PLLA2000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
- HY-167018
-
|
PLGA2000-PEG3000-Vinylsulfone
|
Drug Delivery
|
|
PLGA2000-PEG3000-VS (PLGA2000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
- HY-167037
-
|
PLGA5000-PEG3000-Vinylsulfone
|
Drug Delivery
|
|
PLGA5000-PEG3000-VS (PLGA5000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
- HY-167043
-
|
PLLA10000-PEG3000-Vinylsulfone
|
Drug Delivery
|
|
PLLA10000-PEG3000-VS (PLLA10000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
- HY-167058
-
|
PLLA3000-PEG3000-Vinylsulfone
|
Drug Delivery
|
|
PLLA3000-PEG3000-VS (PLLA3000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
- HY-167053
-
|
PLLA4000-PEG3000-Vinylsulfone
|
Drug Delivery
|
|
PLLA4000-PEG3000-VS (PLLA4000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
- HY-167041
-
|
PLLA5000-PEG3000-Vinylsulfone
|
Drug Delivery
|
|
PLLA5000-PEG3000-VS (PLLA5000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
- HY-167050
-
|
PLLA1000-PEG3000-Vinylsulfone
|
Drug Delivery
|
|
PLLA1000-PEG3000-VS (PLLA1000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
- HY-167026
-
|
PLGA3000-PEG3000-Vinylsulfone
|
Drug Delivery
|
|
PLGA3000-PEG3000-VS (PLGA3000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
- HY-167010
-
|
PLGA1000-PEG3000-Vinylsulfone
|
Drug Delivery
|
|
PLGA1000-PEG3000-VS (PLGA1000-PEG3000-Vinylsulfone) is an amphiphilic polymer. Amphiphilic polymers can be used in drug delivery studies due to their ability to self-assemble into discrete aggregates .
|
-
- HY-167405
-
|
|
Drug Delivery
|
|
PLLA1000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167409
-
|
|
Drug Delivery
|
|
PLLA10000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA10000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167393
-
|
|
Drug Delivery
|
|
PLLA4000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167389
-
|
|
Drug Delivery
|
|
PLLA5000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167401
-
|
|
Drug Delivery
|
|
PLLA2000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167397
-
|
|
Drug Delivery
|
|
PLLA3000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167478
-
|
|
Drug Delivery
|
|
PLLA3000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA3000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167470
-
|
|
Drug Delivery
|
|
PLLA5000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA5000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167474
-
|
|
Drug Delivery
|
|
PLLA4000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA4000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167482
-
|
|
Drug Delivery
|
|
PLLA2000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA2000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167486
-
|
|
Drug Delivery
|
|
PLLA1000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA1000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167490
-
|
|
Drug Delivery
|
|
PLLA10000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA10000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167303
-
|
|
Drug Delivery
|
|
PLLA3000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA3000-PEG3000-Thiol can be used in drug delivery research .
|
-
- HY-167335
-
|
|
Drug Delivery
|
|
PLLA1000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA1000-PEG3000-SPDP can be used in drug delivery research .
|
-
- HY-167299
-
|
|
Drug Delivery
|
|
PLLA4000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA4000-PEG3000-Thiol can be used in drug delivery research .
|
-
- HY-167295
-
|
|
Drug Delivery
|
|
PLLA5000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA5000-PEG3000-Thiol can be used in drug delivery research .
|
-
- HY-167311
-
|
|
Drug Delivery
|
|
PLLA1000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA1000-PEG3000-Thiol can be used in drug delivery research .
|
-
- HY-167331
-
|
|
Drug Delivery
|
|
PLLA2000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA2000-PEG3000-SPDP can be used in drug delivery research .
|
-
- HY-167315
-
|
|
Drug Delivery
|
|
PLLA10000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA10000-PEG3000-Thiol can be used in drug delivery research .
|
-
- HY-167327
-
|
|
Drug Delivery
|
|
PLLA3000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA3000-PEG3000-SPDP can be used in drug delivery research .
|
-
- HY-167323
-
|
|
Drug Delivery
|
|
PLLA4000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA4000-PEG3000-SPDP can be used in drug delivery research .
|
-
- HY-167339
-
|
|
Drug Delivery
|
|
PLLA10000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA10000-PEG3000-SPDP can be used in drug delivery research .
|
-
- HY-167307
-
|
|
Drug Delivery
|
|
PLLA2000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA2000-PEG3000-Thiol can be used in drug delivery research .
|
-
- HY-167319
-
|
|
Drug Delivery
|
|
PLLA5000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA5000-PEG3000-SPDP can be used in drug delivery research .
|
-
- HY-167464
-
|
|
Drug Delivery
|
|
PLLA10000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA10000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167444
-
|
|
Drug Delivery
|
|
PLLA5000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA5000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167456
-
|
|
Drug Delivery
|
|
PLLA2000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA2000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167452
-
|
|
Drug Delivery
|
|
PLLA3000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA3000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167460
-
|
|
Drug Delivery
|
|
PLLA1000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA1000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167448
-
|
|
Drug Delivery
|
|
PLLA4000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA4000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167440
-
|
|
Drug Delivery
|
|
PLLA10000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA10000-PEG3000-NH2 can be used in drug delivery research .
|
-
- HY-167431
-
|
|
Drug Delivery
|
|
PLLA2000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA2000-PEG3000-NH2 can be used in drug delivery research .
|
-
- HY-167418
-
|
|
Drug Delivery
|
|
PLLA5000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA5000-PEG3000-NH2 can be used in drug delivery research .
|
-
- HY-167436
-
|
|
Drug Delivery
|
|
PLLA1000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA1000-PEG3000-NH2 can be used in drug delivery research .
|
-
- HY-167426
-
|
|
Drug Delivery
|
|
PLLA3000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA3000-PEG3000-NH2 can be used in drug delivery research .
|
- HY-167422
-
|
|
Drug Delivery
|
|
PLLA4000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA4000-PEG3000-NH2 can be used in drug delivery research .
|
- HY-167343
-
|
|
Drug Delivery
|
|
PLLA5000-PEG3000-PLLA5000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA5000-PEG3000-PLLA5000 can be used in drug delivery research .
|
- HY-167126
-
|
|
Drug Delivery
|
|
PLLA6000-PEG3000-PLLA6000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA6000-PEG3000-PLLA6000 can be used in drug delivery research .
|
- HY-167367
-
|
|
Drug Delivery
|
|
PLLA1000-PEG3000-PLLA1000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA1000-PEG3000-PLLA1000 can be used in drug delivery research .
|
- HY-167349
-
|
|
Drug Delivery
|
|
PLLA4000-PEG3000-PLLA4000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA4000-PEG3000-PLLA4000 can be used in drug delivery research .
|
- HY-167361
-
|
|
Drug Delivery
|
|
PLLA2000-PEG3000-PLLA2000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA2000-PEG3000-PLLA2000 can be used in drug delivery research .
|
- HY-167355
-
|
|
Drug Delivery
|
|
PLLA3000-PEG3000-PLLA3000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA3000-PEG3000-PLLA3000 can be used in drug delivery research .
|
- HY-167136
-
|
|
Drug Delivery
|
|
PLLA8000-PEG3000-PLLA8000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA8000-PEG3000-PLLA8000 can be used in drug delivery research .
|
- HY-172279B
-
|
|
Drug Delivery
|
|
DSPE-PEG3000-TAT is a PEG compound which composed of DSPE and a cell-penetrating peptide (TAT) (HY-P0281). DSPE-PEG3000-TAT can be used for drug delivery .
|
- HY-144012E
-
|
16:0 PEG3000 PE; 1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-3000] ammonium
|
Drug Delivery
|
|
DPPE-PEG3000 is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
|
- HY-172495
-
|
|
Drug Delivery
|
|
DSPE-PEG3000-iRGD is a PEG compound which composed of DSPE and an αv-integrins targeting peptide (iRGD). iRGD peptide binds to αv-integrins, and then proteolytically cleaved in the tumor to produce CRGDK/R to interact with neuropilin-1, and has tumor-targeting and tumor-penetrating properties. DSPE-PEG3000-iRGD can be used for drug delivery .
|
- HY-172712
-
|
|
Drug Delivery
|
|
DSPE-PEG3000-R6H4 is a PEG compound which composed of DSPE and pH responsive membrane-penetrating peptide (R6H4). R6H4 can be used for pH responsive anticancer drug delivery purposes. DSPE-PEG3000-R6H4 can be used for drug delivery .
|
- HY-172271B
-
|
|
Drug Delivery
|
|
DSPE-PEG3000-LyP-1 is a PEG compound which composed of DSPE and a nine residue peptide (LyP-1) (HY-P2526). LyP-1 targets tumor-associated lymphatic vessels and macrophages .
|
- HY-172483
-
|
|
Drug Delivery
|
|
DSPE-PEG3000-TAASGVRSMH is a PEG compound which composed of DSPE and TAASGVRSMH. TAASGVRSMH has a strong affinity for the NG2 proteoglycan on the PC membrane. DSPE-PEG3000-TAASGVRSMH can be used for drug delivery .
|
| Cat. No. |
Product Name |
|
Classification |
-
- HY-167405
-
|
|
|
Alkynes
|
|
PLLA1000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167409
-
|
|
|
Alkynes
|
|
PLLA10000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA10000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167393
-
|
|
|
Alkynes
|
|
PLLA4000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167389
-
|
|
|
Alkynes
|
|
PLLA5000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167401
-
|
|
|
Alkynes
|
|
PLLA2000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167397
-
|
|
|
Alkynes
|
|
PLLA3000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167464
-
|
|
|
Azide
|
|
PLLA10000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA10000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167444
-
|
|
|
Azide
|
|
PLLA5000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA5000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167456
-
|
|
|
Azide
|
|
PLLA2000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA2000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167452
-
|
|
|
Azide
|
|
PLLA3000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA3000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167460
-
|
|
|
Azide
|
|
PLLA1000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA1000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167448
-
|
|
|
Azide
|
|
PLLA4000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA4000-PEG3000-N3 can be used in drug delivery research .
|
| Cat. No. |
Product Name |
|
Classification |
-
- HY-155933
-
|
DOPE-PEG3000 ammonium; 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-3000] ammonium
|
|
Pegylated Lipids
|
|
18:1 PEG3000 PE ammonium (DOPE-PEG3000 ammonium) is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
|
-
- HY-155928
-
|
14:0 PEG3000 PE ammonium; 1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-3000] ammonium
|
|
Pegylated Lipids
|
|
DMPE-PEG3000 ammonium (14:0 PEG3000 PE ammonium) is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
|
-
- HY-172279B
-
|
|
|
Pegylated Lipids
|
|
DSPE-PEG3000-TAT is a PEG compound which composed of DSPE and a cell-penetrating peptide (TAT) (HY-P0281). DSPE-PEG3000-TAT can be used for drug delivery .
|
-
- HY-144012E
-
|
16:0 PEG3000 PE; 1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-3000] ammonium
|
|
Pegylated Lipids
|
|
DPPE-PEG3000 is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
|
-
- HY-172495
-
|
|
|
Pegylated Lipids
|
|
DSPE-PEG3000-iRGD is a PEG compound which composed of DSPE and an αv-integrins targeting peptide (iRGD). iRGD peptide binds to αv-integrins, and then proteolytically cleaved in the tumor to produce CRGDK/R to interact with neuropilin-1, and has tumor-targeting and tumor-penetrating properties. DSPE-PEG3000-iRGD can be used for drug delivery .
|
-
- HY-172712
-
|
|
|
Pegylated Lipids
|
|
DSPE-PEG3000-R6H4 is a PEG compound which composed of DSPE and pH responsive membrane-penetrating peptide (R6H4). R6H4 can be used for pH responsive anticancer drug delivery purposes. DSPE-PEG3000-R6H4 can be used for drug delivery .
|
-
- HY-172271B
-
|
|
|
Pegylated Lipids
|
|
DSPE-PEG3000-LyP-1 is a PEG compound which composed of DSPE and a nine residue peptide (LyP-1) (HY-P2526). LyP-1 targets tumor-associated lymphatic vessels and macrophages .
|
-
- HY-172483
-
|
|
|
Pegylated Lipids
|
|
DSPE-PEG3000-TAASGVRSMH is a PEG compound which composed of DSPE and TAASGVRSMH. TAASGVRSMH has a strong affinity for the NG2 proteoglycan on the PC membrane. DSPE-PEG3000-TAASGVRSMH can be used for drug delivery .
|
Your information is safe with us. * Required Fields.
Inquiry Information
- Product Name:
- Cat. No.:
- Quantity:
- MCE Japan Authorized Agent: